©2022 Raazesh Sainudiin, Benny Avelin. Attribution 4.0 International (CC BY 4.0)
from Utils import showURL
showURL('https://en.wikipedia.org/wiki/Normal_distribution')
import numpy as np
lam = 2
from sympy import var, integrate, exp
l = var('l')
x = var('x')
f = l*exp(-l*x)
f
y = var('y')
f_y = integrate(f,(x,0,y))
f_y
from sympy import solve
# -(1/l)*ln(-x+1) = y
x = np.random.uniform(0,1,10000)
y = -(1/lam)*np.log(-x+1)
import matplotlib.pyplot as plt
_=plt.hist(y,density=True,bins=100)
z = np.linspace(0,4,100)
plt.plot(z,lam*np.exp(-lam*z))
showURL('https://www.sympy.org/en/index.html')
!ls data
!head -n 100 data/co2_mm_mlo.txt
with open('data/co2_mm_mlo.txt',mode='r') as f:
current_line = f.readline()
while (current_line[0] == '#'):
current_line = f.readline()
current_line
[d for d in current_line.split(' ') if len(d) > 0]
import re
data_line = re.sub('\n','',re.sub(' +',' ',current_line)).split(' ')
data_line
schema = [int,int,float,float,float,float,int]
[sch(d) for sch,d in zip(schema,data_line)]
data = []
with open('data/co2_mm_mlo.txt',mode='r') as f:
current_line = f.readline()
while (current_line[0] == '#'):
current_line = f.readline()
data_line = re.sub('\n','',re.sub(' +',' ',current_line)).split(' ')
data_line_typed = [sch(d) for sch,d in zip(schema,data_line)]
data.append(data_line_typed)
for line in f:
data_line = re.sub('\n','',re.sub(' +',' ',line)).split(' ')
data_line_typed = [sch(d) for sch,d in zip(schema,data_line)]
data.append(data_line_typed)
import numpy as np
data_array = np.array(data,dtype=float)
data_array
data_array.shape
data_array[:,4:5].reshape(-1).shape
average = data_array[:,4]
import matplotlib.pyplot as plt
_=plt.hist(average)
from Utils import basic_stats
basic_stats(average)
from Utils import makeEMF, makeEDF,plotEDF
plotEDF(makeEDF(average))