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Preface

These set of lecture notes began as notes for the course Introduction to Data
Science during the spring and summer of 2021. This course was designed as
a mathematical introduction to datascience, covering most of the basics one
would need to start their education in data science, in the sense of giving the
reader a strong mathematical foundation on which to stand in the future.
Our belief is that in order to develop new algorithms for data science / AI
problems, one needs a strong mathematical intuition.

Another aim with these notes have been to bridge a gap between math,
theoretical computer science and modern approaches concerning concentra-
tion of measure. Most of this material can be found in other texts, but
scattered and with wildly differing levels of rigor.

Another novel point of these notes is that we focus quite a lot on separat-
ing the statistical model (assumptions about the data) from the estimation
procedure (computer algorithms). This idea is hidden in most of modern
data science and often goes against traditional parametric estimation, where
the assumption is fairly often that the true underlying parameter one tries
to estimate, is among those searched for. For instance, in linear regression,
one assumes that the truth is linear and we are just trying to find that. In
modern data-science where the goal is one of prediction (mostly) one instead
does not assume that the truth is linear but one tries to approximate it with
a linear function, and if the fit is good one is happy.

The concentration of measure phenomenon permeates these notes and
we will use it to arrive at non-asymptotic estimates (finite sample bounds)
in many practically useful cases, from performance metrics of classification
to compression of data using dimensionality reduction. The goal has been
to provide quantitative estimates for almost all problems in these notes,
while some have been left out, they can be approached using the methods
developed in these notes.

These notes suit students with little knowledge of probability theory, it
is however easier to digest if you are familiar with the mathematical way of
thinking, i.e. in that of abstraction.
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Topics

• Axiomatic probability: Chapters 1 and 2. These chapters cover the
mathematical basics needed for the rest of the notes. We have chosen
a fairly rigorous way of presenting axiomatic probability which is very
flexible and after you get to know it, very easy to use as there is very
little ambiguity.

• Concentration of measure: Chapter 3. This is the main backbone of
these notes, all chapters following rely on the results obtained here
(except: Chapter 7). We have decided to only touch on the simplest
concentration inequalities, i.e. Hoeffding’s inequality and similar.

• Risk: Chapter 4. This chapter concerns the concept of Risk and how
you can phrase common problems, like regression, pattern recognition
and parameter estimation as risk minimization problems. All estima-
tion problems that appear later in these notes will be a risk minimiza-
tion problem, and specifically empirical risk minimization problems.

• Fundamentals of estimation: Chapter 5. Covers the traditional statis-
tical terminology surrounding parameter estimation. Like consistency,
bias or asymptotic properties.

• Random variable Generation: Chapter 6. Introduces the concept of
pseudo-randomness, some ways to produce it on the computer, and
how to use it to sample from arbitrary distributions.

• Finite Markov Chains: Chapter 7. This chapter introduces Markov
chains as a means of modelling more than just i.i.d. samples. It is also
where you will see a natural interpretation of the σ-algebra as history.
Markov chains are essential in many sequential problems and is the
simplest form of time-series.

• Pattern recognition and Regression: Chapters 8 and 9. This chap-
ter covers pattern recognition and regression from the perspective of
a-priori perfomance or a-posteriori testing. That is, what can we say
about the performance of an algorithm without a test-set and what can
we say once we have a test-set? These chapters relies on the fairly ad-
vanced topic of VC-dimension and growth functions. The a-posteriori
testing is most important for a first course, as well as understanding
the difference between guaranteeing performance beforehand or after-
wards.

• High dimension and Dimensionality reduction: Chapters 10 and 11.
These set of notes end with another look at concentration from the
perspective of dimension and utilize this to perform dimensionality
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reduction. We also cover singular value decomposition and its use in
image compression/data.



Contents

1 Probability Model 1
1.1 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Probability . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.2.1 Consequences of our Definition of Probability . . . . . 5
1.2.2 More on Sigma Algebras . . . . . . . . . . . . . . . . . 8

1.3 Conditional Probability . . . . . . . . . . . . . . . . . . . . . 9
1.3.1 Bayes’ Theorem . . . . . . . . . . . . . . . . . . . . . 10
1.3.2 Independence and Dependence . . . . . . . . . . . . . 12

1.4 Extension of probability* . . . . . . . . . . . . . . . . . . . . 14

2 Random Variables 15
2.1 Basic Definitions . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.2 Discrete Random Variables . . . . . . . . . . . . . . . . . . . 18
2.3 Continuous Random Variables . . . . . . . . . . . . . . . . . . 20

2.3.1 Viewing a deterministic real variable as a random vari-
able . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

2.4 Transformations of random variables . . . . . . . . . . . . . . 23
2.4.1 Transformations of discrete random variables . . . . . 23
2.4.2 Transformations of continuous random variables . . . 24

2.5 Expectations and Lp spaces . . . . . . . . . . . . . . . . . . . 30
2.6 Multivariate Random Variables . . . . . . . . . . . . . . . . . 31

2.6.1 Discrete random vectors . . . . . . . . . . . . . . . . . 33
2.6.2 Continuous random vectors . . . . . . . . . . . . . . . 35
2.6.3 Properties of expectations . . . . . . . . . . . . . . . . 36
2.6.4 Lp is a normed vector space . . . . . . . . . . . . . . . 37
2.6.5 Conditional Random Variables . . . . . . . . . . . . . 41
2.6.6 Mixed random variables . . . . . . . . . . . . . . . . . 43

2.7 Examples Of Modeling . . . . . . . . . . . . . . . . . . . . . . 44
2.7.1 Email spam filtering . . . . . . . . . . . . . . . . . . . 44
2.7.2 Number of website requests during a day . . . . . . . 45
2.7.3 Summary . . . . . . . . . . . . . . . . . . . . . . . . . 46

iv



CONTENTS v

3 Concentration and Limits 48
3.1 Concentration inequalities . . . . . . . . . . . . . . . . . . . . 48

3.1.1 Random variables that are not exponentially integrable* 57
3.2 Convergence of Random Variables . . . . . . . . . . . . . . . 58

3.2.1 Properties of Convergence of RVs∗∗ . . . . . . . . . . . 62
3.3 Law of Large Numbers . . . . . . . . . . . . . . . . . . . . . . 63
3.4 Central Limit Theorem . . . . . . . . . . . . . . . . . . . . . 64

4 Risk 66
4.1 The supervised learning problem . . . . . . . . . . . . . . . . 67

4.1.1 Mathematical description of the learning problem ”find
f” . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

4.1.2 Finding the regression function r(x) = E [Y |X] . . . . 69
4.1.3 The pattern recognition problem (classification) . . . . 71

4.2 Maximum Likelihood Estimation . . . . . . . . . . . . . . . . 73
4.2.1 Maximum Likelihood and regression . . . . . . . . . . 74

5 Fundamentals of Estimation 77
5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
5.2 Point Estimation . . . . . . . . . . . . . . . . . . . . . . . . . 77

5.2.1 Some Properties of Point Estimators . . . . . . . . . . 79
5.3 Non-parametric DF Estimation . . . . . . . . . . . . . . . . . 84
5.4 Plug-in Estimators of Statistical Functionals: Direct estimation 87

6 Random Variable Generation 91
6.1 Congruential Generators . . . . . . . . . . . . . . . . . . . . . 92
6.2 Sampling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
6.3 Practice exercises . . . . . . . . . . . . . . . . . . . . . . . . . 97

7 Finite Markov Chains 99
7.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

7.1.1 Advanced intro* . . . . . . . . . . . . . . . . . . . . . 100
7.1.2 Non advanced introduction . . . . . . . . . . . . . . . 101

7.2 Random Mapping Representation and Simulation . . . . . . . 105
7.3 Irreducibility and Aperiodicity . . . . . . . . . . . . . . . . . 106
7.4 Stationarity . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107
7.5 Reversibility . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

7.5.1 Random Walks on Graphs . . . . . . . . . . . . . . . . 108
7.6 Computer exercises . . . . . . . . . . . . . . . . . . . . . . . . 110

8 Pattern recognition 112
8.1 Linear Classifiers . . . . . . . . . . . . . . . . . . . . . . . . . 112

8.1.1 Linearly Separable Dataset . . . . . . . . . . . . . . . 113
8.1.2 The perceptron algorithm . . . . . . . . . . . . . . . . 113



CONTENTS vi

8.2 Kernelization . . . . . . . . . . . . . . . . . . . . . . . . . . . 116
8.2.1 Other types of Kernels . . . . . . . . . . . . . . . . . . 119

8.3 Theoretical guarantees . . . . . . . . . . . . . . . . . . . . . . 119
8.3.1 Guarantees with a held out testing set . . . . . . . . 120
8.3.2 Other test metrics . . . . . . . . . . . . . . . . . . . . 121

8.4 Empirical Risk Minimization for Linear Classifiers . . . . . 122
8.4.1 A classifier with finitely many hyperplanes (without

testing) . . . . . . . . . . . . . . . . . . . . . . . . . . 122
8.5 Preliminaries for VC theory . . . . . . . . . . . . . . . . . . . 125
8.6 VC theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126
8.7 Vapnik Chervonenkis dimension . . . . . . . . . . . . . . . . . 130
8.8 What if you don’t care about inf R(ϕ)? . . . . . . . . . . . . . 132
8.9 Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . 134

9 Regression 135
9.1 Guarantees with a held out testing set . . . . . . . . . . . . 136

9.1.1 R2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137
9.2 Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . 140

10 High dimension 141
10.1 Introduction: Volume of the unit ball in d dimensions . . . . 141
10.2 The geometry of high dimension . . . . . . . . . . . . . . . . 144
10.3 Properties of the unit ball . . . . . . . . . . . . . . . . . . . 145
10.4 Uniform at random from a ball and sphere . . . . . . . . . . . 148

10.4.1 Generating points uniformly at random from a circle . 148
10.4.2 Uniform at random on the unit sphere in high dimension150
10.4.3 Uniform at random from the unit ball B1? . . . . . . . 151

10.5 High dimensional annulus theorem . . . . . . . . . . . . . . . 151
10.6 Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . 152

11 Dimensionality reduction 153
11.1 Random Projection and Johnson – Lindenstrauss Lemma . . 153
11.2 SVD (Singular Value Decomposition) . . . . . . . . . . . . . . 155

11.2.1 The power method . . . . . . . . . . . . . . . . . . . . 161
11.3 PCA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 162
11.4 SVD in Action . . . . . . . . . . . . . . . . . . . . . . . . . . 162

11.4.1 Factor Analysis . . . . . . . . . . . . . . . . . . . . . . 162
11.4.2 Example on compressing data . . . . . . . . . . . . . . 163
11.4.3 Anomaly detection and reconstruction error . . . . . . 165

11.5 Theoretical analysis . . . . . . . . . . . . . . . . . . . . . . . 165
11.6 Reconstruction error . . . . . . . . . . . . . . . . . . . . . . . 166
11.7 Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . 167



CONTENTS vii

12 Group Assignments 168
12.1 Group Assignment 1 . . . . . . . . . . . . . . . . . . . . . . . 168
12.2 Group Assignment 2 . . . . . . . . . . . . . . . . . . . . . . . 168
12.3 Group Assignment 3 . . . . . . . . . . . . . . . . . . . . . . . 168

Index 171



List of Figures

1.1 Reference to the Venn digram will help you understand this
idea behind the proof of the total probability theorem in The-
orem 1.16 for the four event case. . . . . . . . . . . . . . . . . 11

2.1 PDF and DF of a Normal(µ, σ2) RV for different values of µ
and σ2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

3.1 Examples of distributions that are sub-exponential and sub-
Gaussian . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

3.2 PDF fXn(x) := 11(0,1)(x)(1−cos(2πnx)) of the RV Xn [the left
sub-figure] and its DF Fn(x) :=

∫ x
−∞ 11(0,1)(v)(1−cos(2πnv))dv

[the right sub-figure], for n = 1 [red ’- -’], n = 10 [blue ’-.’],
and n = 100 [green ’-’], respectively. One can see clear conver-
gence of the DFs Fn to 11(0,1)(x)x, the DF of the Uniform(0, 1)
RV, while the corresponding PDFs fn(x) keep oscillating wildly
with n across [0, 2] about 11(0,1)(x), the PDF of the Uniform(0, 1)
RV X. Thus giving a counter-example to the claim that con-
vergence in DFs does not imply convergence in PDFs. . . . . 60

8.1 Linearly separable data with labels +1 or red and −1 or blue. 113
8.2 Linearly non-separable data in two dimensions. . . . . . . . . 116
8.3 Linearly separable in three dimensions after (x1, x2) 7→ (x1, x2, x

2
1+

x22). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117

11.1 The distribution of relative error on the Olivetti faces dataset
using only k = 20 and k = 400 respectively. . . . . . . . . . . 155

11.2 Sample data for SVD . . . . . . . . . . . . . . . . . . . . . . . 155
11.3 The data from Fig. 11.2 projected onto the normal of the

plane defined by v1. . . . . . . . . . . . . . . . . . . . . . . . 157
11.4 10 sample images from Mnist . . . . . . . . . . . . . . . . . . 163
11.5 The data from Fig. 11.4 projected onto the plane defined by

the first 10 singular vectors. . . . . . . . . . . . . . . . . . . . 164

viii

https://www.openml.org/d/41083


Chapter 1

Probability Model

1.1 Experiments

Ideas about chance events and random behaviour arose out of thousands
of years of game playing, long before any attempt was made to use math-
ematical reasoning about them. Board and dice games were well known in
Egyptian times, and Augustus Caesar gambled with dice. Calculations of
odds for gamblers were put on a proper theoretical basis by Fermat and
Pascal in the early 17th century.

Definition 1.1. An experiment is an activity or procedure that produces

distinct, well-defined possibilities called outcomes. The set of all outcomes

is called the sample space, and is denoted by Ω.

The subsets of Ω are called events. A single outcome, ω, when seen as

a subset of Ω, as in {ω}, is called a simple event.

Given an outcome ω ∈ Ω we say that the event E ⊂ Ω occured if ω ∈ E.

Events, E1, E2 . . . En, that cannot occur at the same time are called

mutually exclusive events, or pair-wise disjoint events. This means

that Ei ∩ Ej = ∅ where i ̸= j.

Example 1.2. Some standard examples of experiments are the following:

• Ω = {Defective, Non-defective} if our experiment is to inspect a light

bulb.

There are only two outcomes here, so Ω = {ω1, ω2} where ω1 =

Defective and ω2 = Non-defective.

• Ω = {Heads, Tails} if our experiment is to note the outcome of a coin

toss.

This time, Ω = {ω1, ω2} where ω1 = Heads and ω2 = Tails.

1
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• If our experiment is to roll a die then there are six outcomes corre-

sponding to the number that shows on the top. For this experiment,

Ω = {1, 2, 3, 4, 5, 6}.

Some examples of events are the set of odd numbered outcomes A =

{1, 3, 5}, and the set of even numbered outcomes B = {2, 4, 6}.

The simple events of Ω are {1}, {2}, {3}, {4}, {5}, and {6}.

The outcome of a random experiment is uncertain until it is performed
and observed. Note that sample spaces need to reflect the problem in hand.

Definition 1.3. A trial is a single performance of an experiment and it

results in an outcome.

Example 1.4. Some standard examples of a trial are:

• A roll of a die.

• A toss of a coin.

• A release of a chaotic double pendulum.

An experimenter often performs more than one trial. Repeated trials of
an experiment forms the basis of science and engineering as the experimenter
learns about the phenomenon by repeatedly performing the same mother
experiment with possibly different outcomes. This repetition of trials in
fact provides the very motivation for the definition of probability.

Definition 1.5. An n-product experiment is obtained by repeatedly per-

forming n trials of some experiment. The experiment that is repeated is

called the “mother” experiment.

Example 1.6 (Toss a coin n times). Suppose our experiment entails tossing

a coin n times and recording H for Heads and T for Tails. When n = 3, one

possible outcome of this experiment is HHT, ie. a Head followed by another

Head and then a Tail. Seven other outcomes are possible.

The sample space for “toss a coin three times” experiment is:

Ω = {H, T}3 = {HHH, HHT, HTH, HTT, THH, THT, TTH, TTT} ,

with a particular sample point or outcome ω = HTH, and another distinct
outcome ω′ = HHH. An event, say A, that ‘at least two Heads occur’ is the
following subset of Ω:

A = {HHH, HHT, HTH, THH} .
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Another event, say B, that ‘no Heads occur’ is:

B = {TTT}

Note that the event B is also an outcome or sample point. Another inter-
esting event is the empty set ∅ ⊂ Ω. The event that ‘nothing in the sample
space occurs’ is ∅.

EXPERIMENT SUMMARY

Experiment − an activity producing distinct outcomes.
Ω − set of all outcomes of the experiment.
ω − an individual outcome in Ω, called a simple event.

A ⊆ Ω − a subset A of Ω is an event.
Trial − one performance of an experiment resulting

in 1 outcome.

1.2 Probability

The mathematical model for probability or the probability model is an ax-
iomatic system that may be motivated by the intuitive idea of ‘long-term
relative frequency’. If the axioms and definitions are intuitively motivated,
the probability model simply follows from the application of logic to these
axioms and definitions. No attempt to define probability in the real world
is made. However, the application of probability models to real-world prob-
lems through statistical experiments has a fruitful track record. In fact, you
are here for exactly this reason.

Idea 1.7 (The long-term relative frequency (LTRF) idea). Suppose we are

interested in the fairness of a coin, i.e. if landing Heads has the same “proba-

bility” as landing Tails. We can toss it n times and call N(H, n) the fraction

of times we observed Heads out of n tosses. Suppose that after conducting

the tossing experiment 1000 times, we rarely observed Heads, e.g. 9 out of

the 1000 tosses, then N(H, 1000) = 9/1000 = 0.009. Suppose we continued

the number of tosses to a million and found that this number approached

closer to 0.1, or, more generally, N(H, n) → 0.1 as n → ∞. We might, at

least intuitively, think that the coin is unfair and has a lower “probability”

of 0.1 of landing Heads. We might think that it is fair had we observed

N(H, n) → 0.5 as n → ∞. Other crucial assumptions that we have made

here are:

1. Something Happens: Each time we toss a coin, we are certain

to observe Heads or Tails, denoted by H ∪ T. The probability that
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“something happens” is 1. More formally:

N(H ∪ T, n) =
n

n
= 1.

This is an intuitively reasonable assumption that simply says that one

of the possible outcomes is certain to occur, provided the coin is not

so thick that it can land on or even roll along its circumference.

2. Addition Rule: Heads and Tails are mutually exclusive events in

any given toss of a coin, i.e. they cannot occur simultaneously. The

intersection of mutually exclusive events is the empty set and is de-

noted by H ∩ T = ∅. The event H ∪ T, namely that the event that “coin

lands Heads or coin lands Tails” satisfies:

N(H ∪ T, n) = N(H, n) +N(T, n).

3. The coin-tossing experiment is repeatedly performed in an indepen-

dent manner, i.e. the outcome of any individual coin-toss does not

affect that of another. This is an intuitively reasonable assumption

since the coin has no memory and the coin is tossed identically each

time.

We will use the LTRF idea more generally to motivate a mathematical
model of probability called probability model. Suppose A is an event associ-
ated with some experiment E, so that A either does or does not occur when
the experiment is performed. We want the probability that event A occurs
in a specific performance of E, denoted by P(A), to intuitively mean the
following: if one were to perform a super-experiment E∞ by independently
repeating the experiment E and recording N(A,n), the fraction of times A
occurs in the first n performances of E within the super-experiment E∞.
Then the LTRF idea suggests:

N(A,n) :=
Number of times A occurs

n = Number of performances of E
→ P(A), as n→ ∞ (1.1)

We first begin by defining certain collections of sets that will be the
prototype for collections of events:

Definition 1.8 (Sigma algebras). Let Ω be a set: We say that a collection of

subsets of Ω, F is a sigma-algebra/ sigma-field/ σ-algebra if it satisfies

the following properties:

1. F contains Ω, i.e. Ω ∈ F .

2. The collection F is closed under complementation

A ∈ F =⇒ AC ∈ F .
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3. The collection F is closed under countable unions

A1, A2, . . . ∈ F =⇒
⋃
i

Ai ∈ F .

Remark 1.9. For those not familiar with unions of a countable collection

of sets, we define⋃
i

Ai := {ω : there exists an i such that ω ∈ Ai}.

That is, ω ∈
⋃

iAi if there is a set in the sequence A1, A2, . . . that contain

ω.

Similarly we can define the countable intersection as⋂
i

Ai := {ω : for all i ω ∈ Ai}.

That is, ω ∈
⋂

iAi if it is in all A1, A2, . . ..

Now, we are finally ready to define probability and events.

Definition 1.10 (Probability). Let E be an experiment with sample space

Ω. Let F denote σ-algebra as in Definition 1.8. A probability measure

is a function P : F → [0, 1] satisfying the following conditions:

1. The ‘Something Happens’ axiom holds, i.e. P(Ω) = 1.

2. The ‘Addition Rule’ axiom holds, i.e. for A,B ∈ F :

A ∩B = ∅ =⇒ P(A ∪B) = P(A) + P(B) .

We call elements of F , events and we will call (Ω,F ,P) a probability

triple.

1.2.1 Consequences of our Definition of Probability

It is important to realize that we accept the ‘addition rule’ as an axiom in
our mathematical definition of probability (or our probability model) and
we do not prove this rule. However, the facts which are stated (with proofs)
below, are logical consequences of our definition of probability:

Lemma 1.11. Let (Ω,F ,P) be a probability triple, then

1. For any event A ∈ F , P(Ac) = 1− P(A).
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2. For any two events A,B ∈ F , we have the inclusion-exclusion prin-

ciple:

P(A ∪B) = P(A) + P(B)− P(A ∩B).

3. From inclusion-exclusion principle we get Boole’s inequality: for

any two events A,B ∈ F

P(A ∪B) ≤ P(A) + P(B)

An immediate consequence of 1 is: If A = Ω then Ac = Ωc = ∅ and
P(∅) = 1− P(Ω) = 1− 1 = 0.

Proof. To prove 1 we proceed as follows

LHS︷ ︸︸ ︷
P(A) + P(Ac) =︸︷︷︸

+ rule ∵A∩Ac=∅

P(A ∪Ac) =︸︷︷︸
A∪Ac=Ω

P(Ω)

=︸︷︷︸
∵ P(Ω)=1

RHS︷︸︸︷
1 =⇒︸︷︷︸

LHS−P(A) & RHS−P(A)

P(Ac)

= 1− P(A)

To prove 2 we note that since:

A = (A \B) ∪ (A ∩B) and (A \B) ∩ (A ∩B) = ∅,
A ∪B = (A \B) ∪B and (A \B) ∩B = ∅

the addition rule implies that:

P(A) = P(A \B) + P(A ∩B)

P(A ∪B) = P(A \B) + P(B)

Substituting the first equality above into the second, we get:

P(A ∪B) = P(A \B) + P(B) = P(A)− P(A ∩B) + P(B)

Finally we note that Booles inequality, 3, follows immediately from 2

since −P(A ∩B) ≤ 0.

These basic properties can then be iterated to obtain similar statements
when there is more than 2 events.

Lemma 1.12. (Extended properties) Let (Ω,F ,P) be a probability triple,

then
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1. The inclusion-exclusion principle extends similarly to any n events

A1, A2, . . . , An ∈ F as follows:

P

(
n⋃

i=1

Ai

)
=

n∑
i=1

P(Ai)−
∑
i<j

P(Ai ∩Aj) +
∑

i<j<k

P(Ai ∩Aj ∩Ak)

+ · · ·+ (−1)n−1
∑

i<···<n

P

(
n⋂

i=1

Ai

)

2. Once again by the inclusion-exclusion principle, the Boole’s inequality

(Union bound) generalises to any n events A1, A2, . . . , An ∈ F as

follows:

P

(
n⋃

i=1

Ai

)
≤

n∑
i=1

P(Ai)

3. For a sequence of mutually disjoint events A1, A2, A3, . . . , An ∈ F :

Ai ∩Aj = ∅ for any i ̸= j =⇒ P(A1 ∪A2 ∪ · · · ∪An)

= P(A1) + P(A2) + · · ·+ P(An).

Proof. For the proof of 1 and 2, see the counting argument in https:

//en.wikipedia.org/wiki/Inclusion%E2%80%93exclusion_principle if

you are curious.

3 follows from 1 since all intersections are empty.

We have formally defined the probability model specified by the prob-
ability triple (Ω,F ,P) that can be used to model an experiment E.

Next, let us take a detour into how one might interpret it in the real
world. The following is an adaptation from Williams D, Weighing the Odds:
A Course in Probability and Statistics, Cambridge University Press, 2001,
which henceforth is abbreviated as WD2001.

https://en.wikipedia.org/wiki/Inclusion%E2%80%93exclusion_principle
https://en.wikipedia.org/wiki/Inclusion%E2%80%93exclusion_principle
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Probability Model Real-world Interpretation
Sample space Ω Set of all outcomes of an experiment
Sample point ω Possible outcome of an experiment
(No counterpart) Actual outcome ω⋆ of an experiment
Event A, a (suitable) subset of Ω The real-world event corresponding to A

occurs if and only if ω⋆ ∈ A
P(A), a number between 0 and 1 Probability that A will occur for an

experiment yet to be performed

Events in Probability Model Real-world Interpretation
Sample space Ω The certain even ‘something happens’
The ∅ of Ω The impossible event ‘nothing happens’
The intersection A ∩B ‘Both A and B occur’
A1 ∩A2 ∩ · · · ∩An ‘All of the events A1, A2, . . . , An occur simultaneously’
The union A ∪B ‘At least one of A and B occurs’
A1 ∪A2 ∪ · · · ∪An ‘At least one of the events A1, A2, . . . , An occurs’
Ac, the complement of A ‘A does not occur’
A \B ‘A occurs, but B does not occur’
A ⊂ B ‘If A occurs, then B must occur’

1.2.2 More on Sigma Algebras

Generally one encounters four types of sigma algebras (you will understand
the last two types after taking more advanced courses in mathematics, so it
is fine to understand the ideas intuitively for now!) and they are:

• When the sample space Ω = {ω1, ω2, . . . , ωk} is a finite set with k
outcomes and P(ωi), the probability for each outcome ωi ∈ Ω is known,
then one typically takes the sigma-algebra F to be the set of all subsets
of Ω called the power set and denoted by 2Ω. The probability of
each event A ∈ 2Ω can be obtained by adding the probabilities of
the outcomes in A, i.e., P(A) =

∑
ωi∈A P(ωi). Clearly, 2Ω is indeed a

sigma-algebra and it contains 2#Ω events in it.

• When the sample space Ω = {ω1, ω2, . . .} is a countable set then one
typically takes the sigma-algebra F to be the set of all subsets of Ω.
Note that this is very similar to the case with finite Ω except now
F = 2Ω could have uncountably many events in it.

• If Ω = Rd for finite d ∈ {1, 2, 3, . . .} then the Borel sigma-algebra is
the smallest sigma-algebra containing all half-spaces, i.e., sets of the
form

{x = (x1, x2, . . . , xd) ∈ Rd : x1 ≤ c1, x2 ≤ c2, . . . , xd ≤ cd},



CHAPTER 1. PROBABILITY MODEL 9

for any c = (c1, c2, . . . , cd) ∈ Rd. When d = 1 the half-spaces are
the half-lines {(−∞, c] : c ∈ R} and when d = 2 the half-spaces are
the south-west quadrants {(−∞, c1] × (−∞, c2] : (c1, c2) ∈ R2}, etc.
(Equivalently, the Borel sigma-algebra is the smallest sigma-algebra
containing all open sets in Rd).

• Given a finite set S = {s1, s2, . . . , sk}, let Ω be the sequence space
S∞ := S× S× S× · · · , i.e., the set of sequences of infinite length that
are made up of elements from S. A set of the form

A1 ×A2 × · · · ×An × S× S× · · · , Ak ⊂ S for all k ∈ {1, 2, . . . , n} ,

is called a cylinder set. The set of events in S∞ is the smallest
sigma-algebra containing the cylinder sets.

1.3 Conditional Probability

Conditional probabilities arise when we have partial information about the
result of an experiment which restricts the sample space to a range of out-
comes. For example, if there has been a lot of recent seismic activity in
Christchurch, then the probability that an already damaged building will
collapse tomorrow is clearly higher than if there had been no recent seismic
activity.

Conditional probabilities are often expressed in English by phrases such
as:

“If A happens, what is the probability that B happens?”

or

“What is the probability that A happens if B happens?”

or

“ What is the probability that A occurs given that B occurs?”

Definition 1.13 (Conditional Probability). Suppose we are given an exper-

iment E with a probability triple (Ω,F ,P). Let A,B ∈ F (events), such that

P(A) ̸= 0. Then, we define the conditional probability of B given A by,

P(B|A) := P(A ∩B)

P(A)
. (1.2)

It turns out that the conditional probability is just a restriction of the
events to A and it is as such, a probability measure.
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Lemma 1.14. Given a probability triple (Ω,F ,P) then for A ∈ F with

P(A) ̸= 0,

P(·|A) : F → [0, 1]

is a probability measure as in Definition 1.10 over (Ω,F).

Proof. Exercise!

It is now clear from Lemma 1.14 that (Ω,F ,P(·|A)) is a probability triple
and as such Lemmas 1.11 and 1.12 holds. Hence, there is no distinction in
how we can work with conditional probabilities versus regular probabilities.

1.3.1 Bayes’ Theorem

Next we look at one of the most elegant applications of the definition of
conditional probability along with the addition rule for a partition of Ω
called Bayes’ Theorem. We will present a two event case first called Bayes’
Rule and then present the more general case of the Theorem.

This is useful because many problems involve reversing the order of con-
ditional probabilities. Suppose we want to investigate some phenomenon A
and have an observation B that is evidence about A: for example, A may be
breast cancer and B may be a positive mammogram. Then Bayes’ Theorem
tells us how we should update our probability of A, given the new evidence
B.

Or, put more simply, Bayes’ Rule is useful when you know P (B|A) but
want P (A|B)!

Proposition 1.15 (Bayes’ Rule). Let (Ω,F ,P) be a probability triple, let

A,B ∈ F with P(A),P(B) > 0, then

P(A|B) =
P(A)P(B|A)

P(B)
. (1.3)

Proof. From the definition of conditional probability we have

P(A | B) =
P(A ∩B)

P(B)

P(B | A) = P(A ∩B)

P(A)
.

(1.4)

From this we can see that

P(A | B) =
P(A ∩B)

P(B)
=

P(A)
P(B)

P(A ∩B)

P(A)
=

P(A)
P(B)

P(B | A),

the first and last equality used (1.4) and in the second equality we just

multiplied and divided by P(A).
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Before we see the more general form of Bayes’ Rule, let us make a simple
observation called the total probaility theorem.

Theorem 1.16 (Total probability). Let (Ω,F ,P) be a probability triple,

suppose A1∪A2 . . .∪Ak ∈ F is a sequence of events with positive probability

that partition the sample space, that is, A1∪A2 · · ·∪Ak = Ω and Ai∩Aj = ∅
for any i ̸= j, then for some arbitrary event B ∈ F .

P(B) =

k∑
h=1

P(B ∩Ah) =

k∑
h=1

P(B|Ah)P(Ah) (1.5)

Proof. Since A1, . . . , Ak is a partition of Ω they are mutually exclusive (dis-

joint), hence

B ∩A1, B ∩A2, . . . , B ∩Ak

are mutually exclusive. Thus the first equality follows from Lemma 1.12:3.

The last equality follows from the definition of conditional probability.

Reference to the Venn digram (you should draw below as done in lec-
tures) will help you understand this idea for the four event case.

A1

A2

A3

A4
B

Figure 1.1: Reference to the Venn digram will help you understand this idea

behind the proof of the total probability theorem in Theorem 1.16 for the

four event case.

Theorem 1.17 (Bayes’, 1763). Let everything be as in Theorem 1.16, and

in addition assume that P(B) > 0, then for any i = 1, . . . , k we have

P(Ai|B) =
P(B|Ai)P(Ai)∑k
j=1 P(B|Aj)P(Aj)

(1.6)

Proof. From Definition 1.13, Lemmas 1.12 and 1.14, and Theorem 1.16 we
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have

P(Ah|B) =
P(Ah ∩B)

P(B)
=

P(B ∩Ah)

P(B)
=

P(B|Ah)P(Ah)

P(B)

=
P(B|Ah)P(Ah)

P
(⋃k

h=1(B ∩Ah)
) =

P(B|Ah)P(Ah)∑k
h=1 P (B ∩Ah)

=
P(B|Ah)P(Ah)∑k
h=1 P(B|Ah)P(Ah)

.

It is customary to call P(Ah) the prior probability of Ah, i.e., before
observing B or a priori, and P(Ah|B) the posterior probability of Ah,
i.e., after observing B or a posteriori. Note that these names only make
sense in the context of how you are modeling, in essence the above theorem
does not differentiate between what is observed and not.

1.3.2 Independence and Dependence

In general, P (A|B) and P (A) are different, but sometimes the occurrence
of B makes no difference, and gives no new information about the chances
of A occurring. This is the idea behind independence. Events like “having
blue eyes” and “having blond hair” are associated due to common genetic
ancestry, but events like “my neighbour wins Lotto” and “I win Lotto”
are not due to the Lotto machine being chaotically whirled around before
ejection (as modelled by a well-stirred urn).

Definition 1.18 (Independence of two events). Given a probability triple

(Ω,F ,P), any two events A,B ∈ F are said to be independent if and only

if

P(A ∩B) = P(A)P(B) . (1.7)

Another way of making sense of the above definition is through the
following lemma.

Lemma 1.19. Let (Ω,F ,P) be a probability triple, let A,B ∈ F be inde-

pendent, then if P (B) > 0 we have

P(A | B) = P(A)

Proof. From Definition 1.13 we have

P(A | B) =
P(A ∩B)

P(B)
=

P(A)P(B)

P(B)
= P(A).
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The above lemma says that information about the occurrence of B does
not affect the occurrence of A. If P(A) > 0 we can use Lemma 1.19 with
A,B reversed to get

P(B | A) = P(B),

which says that information about the occurrence of A does not affect the
occurrence of B. So in a way, independence means that they have no effect
on eachother.

If we have more than two events we can extend the notion of pairwise
independence to an independent sequence.

Definition 1.20 (Independence of a sequence of events). Given a prob-

ability triple (Ω,F ,P), we say that a finite or infinite sequence of events

A1, A2, . . . ∈ F are independent if whenever i1, i2, . . . , ik are distinct ele-

ments from the set of indices N, then

P(Ai1 ∩Ai2 . . . ∩Aik) = P(Ai1)P(Ai2) · · ·P(Aik)

It should be noted that for a sequence of more than two eventsA1, A2, . . . ∈
F , pairwise independence (see Definition 1.18) is a weaker requirement than
sequentially independent (see Definition 1.20). To make this clear, see the
next example:

Example 1.21 (Pairwise independent events that are not jointly indepen-

dent). Let a ball be drawn from an well-stirred urn containing four balls

labelled 1,2,3,4. Consider the events A = {1, 2}, B = {1, 3} and C = {1, 4}.
Then,

P(A ∩B) = P(A)P(B) =
2

4
× 2

4
=

1

4
,

P(A ∩ C) = P(A)P(C) =
2

4
× 2

4
=

1

4
,

P(B ∩ C) = P(B)P(C) =
2

4
× 2

4
=

1

4
,

but,

1

4
= P({1}) = P(A ∩B ∩ C) ̸= P(A)P(B)P(C) =

2

4
× 2

4
× 2

4
=

1

8
.

Therefore, inspite of being pairwise independent, the events A, B and C are

not jointly independent.
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1.4 Extension of probability*

Definition 1.10 is limited to only finite collections of sets, i.e. the additivity
works for finitely many sets, which is certainly enough to obtain an under-
standing of probability. However, in the later stages we actually need the
following extension of the definition of probability.

Definition 1.22 (Probability (Full)). Let E be an experiment with sam-

ple space Ω. Let F denote σ-algebra as in Definition 1.8. A probability

measure is a function P : F → [0, 1] satisfying the following conditions:

1. The ‘Something Happens’ axiom holds, i.e. P(Ω) = 1.

2. The ‘Countably additive’ axiom holds, i.e. let {Ei} be a countable col-

lection of events in F that are pairwise disjoint then:

P(∪iEi) =
∑
i

P(Ei) .



Chapter 2

Random Variables

2.1 Basic Definitions

To take advantage of our measurements over the real numbers, in terms of
its metric structure and arithmetic, we need to formally define this measure-
ment process using the notion of a random variable.

Definition 2.1 (Random Variable). Let (Ω,F ,P) be some probability triple.

Then, a Random Variable (RV), say X, is a function from the sample

space Ω to the set of real numbers R

X : Ω → R

such that for every x ∈ R, the inverse image of the half-open real interval

(−∞, x] is an element of the collection of events F , i.e.:

for every x ∈ R, X [−1]( (−∞, x] ) := {ω : X(ω) ≤ x} ∈ F .

This definition can be summarised by the statement that a RV is an F-measurable map. We

assign probability to the RV X as follows:

P(X ≤ x) = P( X [−1]( (−∞, x] ) ) := P( {ω : X(ω) ≤ x} ) . (2.1)

Definition 2.2 (Distribution Function). The Distribution Function (DF)

or Cumulative Distribution Function (CDF) of any RV X, over a

probability triple (Ω,F ,P), denoted by F is:

F (x) := P(X ≤ x) = P( {ω : X(ω) ≤ x} ), for any x ∈ R . (2.2)

Thus, F (x) or simply F is a non-decreasing, right continuous, [0, 1]-valued

function over R. When a RV X has DF F we write X ∼ F .

15
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Remark 2.3 (Notation). It is enough to understand the idea of random

variables as explained above, and work with random variables using simplified

notation like

P(2 ≤ X ≤ 3)

rather than

P({ω : 2 ≤ X(ω) ≤ 3})

but note that when learning or doing more advanced work this sample space

notation is usually needed to clarify the true meaning of the simplified no-

tation.

From the idea of a distribution function, we get something that resembles
the fundamental theorem of calculus:

Proposition 2.4. Let (Ω,F ,P) be a probability triple and let X be a random

variable with DF F . Then for a < b we get

P(a < X ≤ b) = F (b)− F (a). (2.3)

Proof. For this proof we will be very formal for the sake of clarity, later on

we will adopt the more relaxed notation. Define the sets

A = {ω : ω ∈ Ω, X(ω) ≤ a}
B = {ω : ω ∈ Ω, X(ω) ≤ b}
C = {ω : ω ∈ Ω, a < X(ω) ≤ b}

Note that A,B,C ∈ F , which follows from Definition 2.1. Furthermore,

note that B = A ∪ C and that A ∩ C = ∅. Now using Definition 2.2

and Lemma 1.11 and our above construction, we get

F (b) = P(B) = P(A ∪ C) = P(A) + P(C) = F (a) + P(C).

Rearranging the above,

F (b)− F (a) = P(C) = P(a < X ≤ b).

which is (2.3).

A special RV that often plays the role of ‘building-block’ in Probability
and Statistics is the indicator function of an event A that tells us whether the
event A has occurred or not. Recall that an event belongs to the collection
of possible events F for our experiment.
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Definition 2.5. [Indicator Function] Given a probability triple (Ω,F ,P),
the Indicator Function of an event A ∈ { which is denoted 11A is defined

as follows:

11A(ω) :=

{
1 if ω ∈ A

0 if ω /∈ A
(2.4)

Lemma 2.6. The indicator function 11A as in Definition 2.5 is a random

variable.

Proof. For 11A to be a RV, we need to verify that for any real number x ∈ R,
the inverse image 11

[−1]
A ( (−∞, x] ) is an event, ie :

11
[−1]
A ( (−∞, x] ) := {ω : 11A(ω) ≤ x} ∈ F .

Since the indicator function is either 0 or 1 we observe that we have to get

the empty event if x < 0, furthermore we have to get the entire sample space

if x > 1 (since it is always true). The last case is when 0 ≤ x < 1, which is

only ok when 11A = 0. Summarised below:

11
[−1]
A ( (−∞, x] ) := {ω : 11A(ω) ≤ x} =


∅ if x < 0

Ac if 0 ≤ x < 1

A ∪Ac = Ω if 1 ≤ x

Thus, 11
[−1]
A ( (−∞, x] ) is one of the following three sets that belong to F ;

(1) ∅, (2) Ac and (3) Ω depending on the value taken by x relative to the

interval [0, 1]. We have proved that 11A is indeed a RV.

Model 2.7 (Indicator of an event as Bernoulli RV). Given a probability

triple (Ω,F ,P) and an event A ∈ F , the random variable 11A is called the

Bernoulli RV for event A with a known probability P(A). We will adopt the

notation Bernoulli(θ) for the RV by introducing a paramater θ ∈ [0, 1] for

the typically unknown probability P(A).

Lemma 2.8. Given a probability triple (Ω,F ,P) and an event A ∈ F , the

following properties hold:

1. 11A = 1− 11Ac, (complementation behaves like the probability)

2. 11A∩B = 11A11B (intersection becomes product)

3. 11A∪B = 11A + 11B − 11A11B (union becomes addition - intersection)

As you can see, there is a lot of similarities between the properties of
indicator function and the properties of the probability measure P.
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Proof. Exercise!

We slightly abuse notation when A is a single element set by ignoring
the curly braces.

2.2 Discrete Random Variables

When a RV takes at most countably many values from a discrete set X,
we call it a discrete RV. Recall that a set X is said to be discrete if we
can enumerate its elements, i.e., find an enumerating or counting function
X ∋ x 7→ i ∈ N that associates each element x ∈ X to a natural number
i ∈ N. So, X is either finite with k elements in X = {x1, x2, . . . , xk} or
countably infinite with the same cardinality as N with X = {x1, x2, . . .}.

Definition 2.9. Let X be a R-valued RV over a probability triple (Ω,F ,P).
If X takes values in an enumerable set X ⊂ R then we call X a R-valued
discrete random variable.

The concept of distribution function (DF) does not differentiate between
types of random variables, the next definition does:

Definition 2.10. [probability mass function (PMF)] Let X be a R-valued
discrete RV over a probability triple (Ω,F ,P). We define the probability

mass function (PMF) f of X to be the function f : R → [0, 1] defined as

follows:

f(x) := P(X = x) = P( {ω : X(ω) = x} ) =

{
θi if x = xi ∈ X.
0 otherwise.

(2.5)

Theorem 2.11. The relation between the DF F and PMF f for a discrete

RV X is as follows:

1. For any x ∈ R,
F (x) =

∑
xi≤x

f(xi) =
∑
xi≤x

θi . (2.6)

2. For any a, b ∈ R with a < b,

F (b)− F (a) =
∑

a<xi≤b

θi . (2.7)

This is just the sum of all probabilities θi for which xi satisfies a <

xi ≤ b.
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3. From the fact that P(Ω) = 1, we get that the sum of all the probabilties

is 1: ∑
i

θi = 1 . (2.8)

Proof. Let us prove the first equality. First, recall that the definition of a

discrete random variable required that X takes values in an enumerable X,
i.e. X = {x1, . . .}, then for each xi ∈ X define the sets

Ai = {ω : ω ∈ Ω, i− 1 < X(ω) ≤ i} = {X = i},

and note that Ai ∈ F , ∪iAi = Ω and they are mutually exclusive. Now

using Definitions 1.22 and 2.2 we get

F (x) = P(X ≤ x) = P (∪i:xi≤xAi) =
∑

i:xi≤x

P(Ai) =
∑
xi≤x

f(xi).

The last equality of (2.6) is just the definition of θi in Definition 2.10.

The proof of the other properties is an Exercise!

Remark 2.12. When X only has finitely many possibilities, say k with

X = {x1, x2, . . . , xk}, then we may think of the probability P specified by

(θ1, θ2, . . . , θk) as a point in the unit (k − 1) simplex:

∆k−1 := {(θ1, θ2, . . . , θk) ∈ Rk :
∑
i

θi = 1 and θi ≥ 0, for all i} (2.9)

In particular when X has only two possible values with X = {x1, x2} then

θ2 = 1− θ1, so we can avoid subscripts and take θ := θ1 and realize that the

probability P is now specified by the point (θ, 1− θ) in the unit 1 simplex:

∆1 := {(θ, 1− θ) ∈ R2 : 0 ≤ θ ≤ 1} . (2.10)

See https: // en. wikipedia. org/ wiki/ Simplex .

Out of the class of discrete random variables we will define specific kinds
as they arise often in applications. We classify discrete random variables
into three types for convenience as follows:

• Discrete uniform random variables with finitely many possibilities

• Discrete non-uniform random variables with finitely many possibilities

• Discrete non-uniform random variables with (countably) infinitely many
possibilities

https://en.wikipedia.org/wiki/Simplex
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Model 2.13 (Discrete Uniform). We say that a discrete random variable

X is uniformly distributed over k possible values in X = {x1, x2, . . . , xk} if

its probability mass function is:

f(x) =

{
θi =

1
k if x = xi, where i = 1, 2, . . . , k ,

0 otherwise .
(2.11)

The distribution function for the discrete uniform random variable X is:

F (x) =
∑
xi≤x

f(xi) =
∑
xi≤x

θi =



0 if −∞ < x < x1 ,
1
k if x1 ≤ x < x2 ,
2
k if x2 ≤ x < x3 ,
...
k−1
k if xk−1 ≤ x < xk ,

1 if xk ≤ x <∞ .

(2.12)

The discrete uniform RV with values in X = {1, 2, . . . , k} is called the equi-

probable de Moivre(k) RV.

Example 2.14. Let (Ω,F ,P) be a probability triple and let A1, . . . , Ak ∈ F ,

then

X =

k∑
i=1

11Ai

is a R-valued discrete random variable, taking values in {0, . . . , k}.
Can you write down the probability mass function and the distribution

function for X when there is only two sets A1, A2?

2.3 Continuous Random Variables

If we have a random variable that does not take values in an enumerable set,
then it is not discrete. However we often wish to allow the random variable
to take any value in R or just every value in the interval [0, 1]. Let us define
such a class of random variables.

Definition 2.15 (Continuous random variable). Let (Ω,F ,P) be a probabil-

ity triple and let X be a R-valued random variable with distribution function

F . We say that X is a continuous RV if there exists a piecewise-continuous

function f : R → [0,∞], called the probability density function (PDF)

of X, such that

F (x) = P(X ≤ x) =

∫ x

−∞
f(v) dv. (2.13)
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Remark 2.16. see https: // en. wikipedia. org/ wiki/ Piecewise .

Remark 2.17. There are actually random variables which are neither dis-

crete or continuous, for instance, the product of a discrete and a continuous

random variable!! We will deal with these later on.

Theorem 2.18. Let (Ω,F ,P) be a probability triple and let X be a R-valued
continuous random variable, then the following holds:

1. For any x ∈ R, the probability of observing a single value is zero:

P(X = x) = 0.

2. The probability density function (density function) is the derivative of

the distribution function. That is:

f(x) =
d

dx
F (x) =: F ′(x), (2.14)

for every x at which f(x) is continuous.

3. For any a, b ∈ R with a < b,

P(a < X < b) = P(a < X ≤ b) = P(a ≤ X ≤ b) = P(a ≤ X < b)

= F (b)− F (a) =

∫ b

a
f(v)dv . (2.15)

4. Finally: ∫ ∞

−∞
f(x) dx = 1 .

Proof. Fix x and let ϵ > 0 be arbitrary, then from the properties of the

probability measure, we get

F (x− ϵ) ≤ P(X < x) ≤ F (x)

However we know that integrals are continuous and as such limϵ→0+ F (x−
ϵ) = F (x), this proves that

P(X < x) = P(X ≤ x). (2.16)

Now to prove 1 we simply write

P(X = x) = P(x ≤ X ≤ x) = P(X ≤ x)− P(X < x) = 0

https://en.wikipedia.org/wiki/Piecewise
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where the last step follows from (2.16). Let a ≤ b and note that

P(a ≤ X ≤ b) = P(X ≤ b)− P(X < a)

Property 2 is the first fundamental theorem of calculus.

Property 3 follows from Proposition 2.4, (2.16), and Definition 2.15.

Finally propety 4 is an exercise!!

The standard normal distribution is the most important continuous prob-
ability distribution. It was first described by De Moivre in 1733 and subse-
quently by C. F. Gauss (1777 - 1885). Many random variables have a normal
distribution, or they are approximately normal, or can be transformed into
normal random variables in a relatively simple fashion. Furthermore, the
normal distribution is a useful approximation of more complicated distribu-
tions.

Model 2.19 (Normal(0, 1) or standard normal or Gaussian RV). A continu-

ous random variable Z is called standard normal or standard Gaussian

if its probability density function is

ϕ(z) =
1√
2π

exp

(
−z

2

2

)
. (2.17)

An exercise in calculus yields the first two derivatives of ϕ as follows:

dϕ

dz
= − 1√

2π
z exp

(
−z

2

2

)
= −zϕ(z),

d2ϕ

dz2
=

1√
2π

(z2 − 1) exp

(
−z

2

2

)
= (z2 − 1)ϕ(z) .

Thus, ϕ has a global maximum at 0, it is concave down if z ∈ (−1, 1) and
concave up if z ∈ (−∞,−1) ∪ (1,∞). This shows that the graph of ϕ is
shaped like a smooth symmetric bell centred at the origin over the real line.

2.3.1 Viewing a deterministic real variable as a random vari-

able

Consider the class of discrete RVs with distributions that place all proba-
bility mass on a single real number. This is the probability model for the
deterministic real variable, which is often thought of as an unknown constant
θ ∈ R.

Model 2.20 (Point Mass(θ)). Given a specific point θ ∈ R, we say an RV

X has point mass at θ or is Point Mass(θ) distributed if the DF is:

F (x; θ) =

{
0 if x < θ

1 if x ≥ θ
(2.18)
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and the PMF is:

f(x; θ) =

{
0 if x ̸= θ

1 if x = θ
(2.19)

Thus, Point Mass(θ) RV X is deterministic in the sense that every re-
alisation of X is exactly equal to θ ∈ R. We will see that this distribution
plays a central limiting role in asymptotic statistics.

2.4 Transformations of random variables

Suppose we know the distribution of a random variable X. How do we find
the distribution of a transformation of X, say g(X)?

Now, let us return to our question of determining the distribution of the
transformation g(X).

2.4.1 Transformations of discrete random variables

To answer this question we must first observe that the inverse image g[−1]

satisfies the following properties:

• g[−1](Y) = X

• For any set A, g[−1](Ac) =
(
g[−1](A)

)c
• For any collection of sets {A1, A2, . . .},

g[−1] (A1 ∪A2 ∪ · · · ) = g[−1](A1) ∪ g[−1](A2) ∪ · · · .

Let X be an enumerable subset of R, then Y := g(X) is also enumerable and
(g(X))[−1]((−∞, x)) ∈ F . This is a subtle point, and I strongly encourage
you to try to figure out why this is!!

Consequentially,

Pg(A) = P (g(X) ∈ A) = P
(
X ∈ g[−1](A)

)
(2.20)

satisfies the axioms of probability and gives the desired probability of the
event A from the transformation Y = g(X) in terms of the probability of the
event given by the inverse image of A underpinned by the random variable
X. It is crucial to understand this from the sample space Ω of the underlying
experiment in the sense that (2.20) is just short-hand for its actual meaning:

P ({ω ∈ Ω : g(X(ω)) ∈ A}) = P
({
ω ∈ Ω : X(ω) ∈ g[−1](A)

})
= P

(
X [−1](g[−1](A))

)
.
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Because we have more than one random variable to consider, namely, X
and its transformation Y = g(X) we will subscript the probability density
or mass function and the distribution function by the random variable itself.
For example we denote the distribution function of X by FX(x) and that of
Y by FY (y).

For a discrete random variable X with probability mass function fX we
can obtain the probability mass function fY of Y = g(X) using (2.20) as
follows:

fY (y) = P(Y = y) = P(Y ∈ {y})

= P (g(X) ∈ {y}) = P
(
X ∈ g[−1]({y})

)
= P

(
X ∈ g[−1](y)

)
=

∑
x∈g[−1](y)

fX(x) =
∑

x∈{x:g(x)=y}

fX(x) .

This gives the formula:

fY (y) = P(Y = y) =
∑

x∈g[−1](y)

fX(x) =
∑

x∈{x:g(x)=y}

fX(x) . (2.21)

2.4.2 Transformations of continuous random variables

Suppose we know FX and/or fX of a continuous random variable X. Recall
(2.20), in this formula it is essential that

{ω ∈ Ω : X [−1](g[−1](A))} ∈ F .

That is, what we need to know is, when is g(X) itself a random variable
with respect to (Ω,F ,P)?

Definition 2.21. We say that a function g : R → R is Borel, if we denote

Σ the Borel sigma algebra on R (see Section 1.2.2) and for every A ∈ Σ

g[−1](A) ∈ Σ.

Remark 2.22. The reason we need this seemingly abstract notion, is to

guarantee that if g : R → R is Borel, then if X is any R-valued RV, then

g(X) is an R-valued RV.

Recall that the definition of a R-valued RV X in some probability triple

(Ω,F ,P) was that

X [−1]((−∞, x]) ∈ F , for all x ∈ R.

The Borel sigma-algebra Σ is the smallest sigma-algebra that contains

the half open intervals (−∞, x] and thus if we take A ∈ Σ then we also

get X [−1](A) ∈ F by the properties of inverses. Thus it is immediate that

(g(X))[−1](A) ∈ F .
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Remark 2.23. Recall that in the case when X is a R-valued discrete random

variable, we don’t need to assume anything about g. This was because of the

fact that all enumerable sets of R is Borel, but we only mentioned it in

passing.

Remark 2.24. A small subset of Borel functions are the continuous, piece-

wise continuous and monotone functions, which will be the ones we use

mostly.

Our objective now, is to obtain FY and/or fY of Y from FX and/or fX .

One-to-one transformations

The easiest case for transformations of continuous random variables is when
g is one-to-one and monotone (monotone implies Borel).

• First, let us consider the case when g is increasing (monotone) on the
range of the random variable X. In this case g−1 is also an increasing
function and we can obtain the distribution function of Y = g(X) in
terms of the distribution function of X as

FY (y) = P (Y ≤ y) = P (g(X) ≤ y) = P
(
X ≤ g−1(y)

)
= FX(g−1(y)) .

Now, let us use the chainrule to compute the density of Y as follows:

fY (y) =
d

dy
FY (y) =

d

dy
FX

(
g−1(y)

)
= fX

(
g−1(y)

) d
dy

(
g−1(y)

)
.

• Second, let us consider the case when g is decreasing (monotone)
on the range of the random variable X. In this case g−1 is also a
decreasing function and we can obtain the distribution function of
Y = g(X) in terms of the distribution function of X as

FY (y) = P (Y ≤ y) = P (g(X) ≤ y) = P
(
X ≥ g−1(y)

)
= 1− FX(g−1(y)) ,

and the density of Y as

fY (y) =
d

dy
FY (y) =

d

dy

(
1− FX

(
g−1(y)

))
= −fX

(
g−1(y)

) d
dy

(
g−1(y)

)
.

For a decreasing g, its inverse function g−1 is also decreasing and
consequently the density fY is indeed positive because d

dy

(
g−1(y)

)
is

negative.

We can combine the above two cases and obtain the following
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Proposition 2.25 (Change of variable formula). Let (Ω,F ,P) be a prob-

ability triple and let X be a R-valued RV. If g : R → R is one-to-one and

monotone (increasing or decreasing) on the range of X, i.e X(Ω) ⊂ R, then

fY (y) = fX
(
g−1(y)

) ∣∣∣∣ ddyg−1(y)

∣∣∣∣ . (2.22)

The next example yields the location-scale family of normal random vari-
ables via a family of linear transformations of the standard normal random
variable.

Example 2.26. Let Z be the standard Gaussian or standard normal random

variable with probability density function ϕ(z) given by Equation (2.17). For

real numbers σ > 0 and µ consider the linear transformation of Z given by

Y = g(Z) = σZ + µ .

We are interested in the density of the tranformed random variable Y =

g(Z) = σZ + µ. Once again, since g is a one-to-one monotone function let

us follow the four steps and use the change of variable formula to obtain fY
from fZ = ϕ and g.

1. y = g(z) = σz + µ is a monotone increasing function over −∞ < z <

∞, the range of Z. So, we can apply the change of variable formula.

2. z = g−1(y) = (y − µ)/σ is a monotone increasing function over the

range of y given by, −∞ < y <∞.

3. For −∞ < y <∞,∣∣∣∣ ddyg−1(y)

∣∣∣∣ = ∣∣∣∣ ddy
(
y − µ

σ

)∣∣∣∣ = ∣∣∣∣ 1σ
∣∣∣∣ = 1

σ
.

4. we can use (2.17) and (2.22) which gives

fZ(z) = ϕ(z) =
1√
2π

exp

(
−z

2

2

)
,

to find the density of Y as follows:

fY (y) = fZ
(
g−1(y)

) ∣∣∣∣ ddyg−1(y)

∣∣∣∣ = ϕ

(
y − µ

σ

)
1

σ
=

1

σ
√
2π

exp

[
−1

2

(
y − µ

σ

)2
]
,

for −∞ < y <∞.

Thus, we have obtained the expression for the probability density function of

the linear transformation σZ + µ of the standard normal random variable

Z. This analysis leads to the following definition.
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Model 2.27 (Normal(µ, σ2) RV). Given a location parameter µ ∈ (−∞,+∞)

and a scale parameter σ2 > 0, the Normal(µ, σ2) or Gaussian(µ, σ2) random

variable X has probability density function:

f(x;µ, σ2) =
1

σ
√
2π

exp

[
−1

2

(
x− µ

σ

)2
]

(σ > 0) . (2.23)

The normal distribution has the distribution function

F (x;µ, σ2) =
1

σ
√
2π

∫ x

−∞
exp

[
−1

2

(
v − µ

σ

)2
]
dv . (2.24)

Figure 2.1: PDF and DF of a Normal(µ, σ2) RV for different values of µ and

σ2

Direct method

If the transformation g in Y = g(X) is not necessarily one-to-one then
special care is needed to obtain the distribution function or density of Y .
For a continuous random variable X with a known distribution function FX

we can obtain the distribution function FY of Y = g(X) using (2.20) as
follows:

FY (y) = P (Y ≤ y) = P (Y ∈ (−∞, y])

= P (g(X) ∈ (−∞, y]) = P
(
X ∈ g[−1]((−∞, y])

)
= P (X ∈ {x : g(x) ∈ (−∞, y]}) . (2.25)

In words, the above equalities just mean that the probability that Y ≤ y is
the probability that X takes a value x that satisfies g(x) ≤ y. We can use
this approach if it is reasonably easy to find the set g[−1]((−∞, y]) = {x :
g(x) = (−∞, y]}.
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Example 2.28. Let X be any random variable with distribution function

FX . Let Y = g(X) = X2. Then we can find FY , the distribution function

of Y from FX as follows:

• Since Y = X2 ≥ 0, if y < 0 then FY (y) = P
(
X ∈ {x : x2 < y}

)
=

P(X ∈ ∅) = 0.

• If y ≥ 0 then

FY (y) = P (Y ≤ y) = P
(
X2 ≤ y

)
= P (−√

y ≤ X ≤ √
y)

= FX(
√
y)− FX(−√

y) .

By differentiation we get:

• If y < 0 then fY (y) =
d
dy (FY (y)) =

d
dy0 = 0.

• If y ≥ 0 then

fY (y) =
d

dy
(FY (y)) =

d

dy
(FX(

√
y)− FX(−√

y))

=
d

dy
(FX(

√
y))− d

dy
(FX(−√

y))

=
1

2
y−

1
2 fX(

√
y)−

(
−1

2
y−

1
2 fX(−√

y)

)
=

1

2
√
y
(fX(

√
y) + fX(−√

y)) .

Therefore, the distribution function of Y = X2 is:

FY (y) =

{
0 if y < 0

FX(
√
y)− FX(−√

y) if y ≥ 0 .
(2.26)

and the probability density function of Y = X2 is:

fY (y) =

0 if y < 0
1

2
√
y

(
fX(

√
y) + fX(−√

y)
)

if y ≥ 0 .
(2.27)

Using the direct method’s (2.25), we can obtain the distribution function
of the Normal(µ, σ2) random variable from that of the tabulated distribution
function of the Normal(0, 1).
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Proposition 2.29 (One Table to Rule Them All Gaussians). The distribu-

tion function FX(x;µ, σ2) of the Normal(µ, σ2) random variable X and the

distribution function FZ(z) = Φ(z) of the standard normal random variable

Z are related by:

FX(x;µ, σ2) = FZ

(
x− µ

σ

)
= Φ

(
x− µ

σ

)
.

Proof. Let Z be a Normal(0, 1) random variable with distribution function

Φ(z) = P (Z ≤ z). We know that if X = g(Z) = σZ + µ then X is the

Normal(µ, σ2) random variable. Therefore,

FX(x;µ, σ2) = P (X ≤ x) = P (g(Z) ≤ x) = P (σZ + µ ≤ x)

= P

(
Z ≤ x− µ

σ

)
= FZ

(
x− µ

σ

)
= Φ

(
x− µ

σ

)
.

Hence we often transform a general Normal(µ, σ2) random variable, X,
to a standardised Normal(0, 1) random variable, Z, by the substitution:

Z =
X − µ

σ
.
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2.5 Expectations and Lp spaces

Expectation is perhaps the most fundamental concept in probability theory.
In fact, probability is itself an expectation as you will soon see!

Expectation is one of the fundamental concepts in probability. The ex-
pected value of a real-valued random variable gives the population mean, a
measure of the centre of the distribution of the variable in some sense. Its
variance measures its spread and so on.

Definition 2.30 (Expectation of a RV). The expectation, or expected

value, or mean, or first moment, of a random variable X, with distribu-

tion function F and density f , is defined to be

E(X) :=

∫
x dF (x) =

{∑
x xf(x) if X is discrete∫
xf(x) dx if X is continuous ,

(2.28)

provided the sum or integral is well-defined. We say the expectation exists if∫
|x| dF (x) <∞ . (2.29)

Sometimes, we denote E(X) by EX for brevity. Thus, the expectation is a

single-number summary of the RV X and may be thought of as the average.

Definition 2.31. Let (Ω,F ,P) be some probability triple, then for a random

variable X : Ω → R, we say that X is in Lp(P) for some 1 ≤ p <∞ if,∫
|x|pdFX <∞,

where FX is the distribution function for X. If there is no fear of ambiguity

we will simply write L2 without referring to the measure P.

So another way of saying that the expectation of the random variable X
exists is the same as saying that X ∈ L1(P).

Definition 2.32 (Variance of a RV). Let X be a RV with mean or expecta-

tion E(X). The variance of X denoted by V(X) or simply VX is

V(X) := E
(
(X − E(X))2

)
=

∫
(x− E(X))2 dF (x) ,

provided this expectation exists. The standard deviation denoted by sd(X) :=√
V(X). Thus variance is a measure of “spread” of a distribution.

Another way of saying that the variance exists is to say that X ∈ L2(P).
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Definition 2.33 (k-th moment of a RV). Let k = 1, . . ., we call

E
(
Xk
)
=

∫
xk dF (x)

as the k-th moment of the RV X and say that the k-th moment exists when

X ∈ Lk. We call the following expectation as the k-th central moment:

E
(
(X − E(X))k

)
.

2.6 Multivariate Random Variables

Often, in experiments we are measuring two or more aspects simultaneously.
For example, we may be measuring the diameters and lengths of cylindrical
shafts manufactured in a plant or heights, weights and blood-sugar levels of
individuals in a clinical trial. Thus, the underlying outcome ω ∈ Ω needs
to be mapped to measurements as realizations of random vectors in the
real plane R2 = (−∞,∞) × (−∞,∞) or the real space R3 = (−∞,∞) ×
(−∞,∞)× (−∞,∞):

ω 7→ (X(ω), Y (ω)) : Ω → R2 ω 7→ (X(ω), Y (ω), Z(ω)) : Ω → R3

More generally, we may be interested in heights, weights, blood-sugar lev-
els, family medical history, known allergies, etc. of individuals in the clinical
trial and thus need to make m measurements of the outcome in Rm using a
“measurable mapping” from Ω → Rm. To deal with such multivariate mea-
surements we need the notion of random vectors (RV⃗s), i.e. ordered pairs
of random variables (X,Y ), ordered triples of random variables (X,Y, Z),
or more generally ordered m-tuples of random variables (X1, X2, . . . , Xm).

We begin by defining what we mean

Definition 2.34 (Random Variable). Let (Ω,F ,P) be some probability triple.

Then, a Rm valued Random Variable (RV), say X, is a function from

the sample space Ω to the set vectors Rm

X : Ω → Rm

such that the inverse image of the half-open product intervals (−∞, x1] ×
· · · × (−∞, xm] for x = (x1, . . . , xm) ∈ Rm is an element of the collection of

events F , i.e., for every x ∈ Rm we have

X [−1]( (−∞, x1]× · · · × (−∞, xm] ) := {ω : X(ω) ≤ x} ∈ F ,

where we interpret the inequality X ≤ x to hold for all components. This

definition can be summarised by the statement that a RV is an F-measurable

map from Ω to Rm.
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This definition looks remarkably similar to Definition 2.1, in fact it is
the same. We can simply write it as follows.

Definition 2.35 (Abstract definition of a RV). Let (Ω,F ,P) be a probability

triple and let (X,ΣX) be a space together with a sigma algebra ΣX . Then

we call a function X : Ω → X an X-valued RV if

X [−1](A) ∈ F , for all A ∈ ΣX .

If we in the above definition just set X = Rm and ΣX the Borel sigma
algebra (or any subset that generates the Borel sigma algebra, like half
spaces) as in Section 1.2.2, we obtain Definition 2.34.

Let us leave the abstract notion and go back to Rm valued RV’s. Specif-
ically, let us define the corresponding distribution function:

Definition 2.36 (JDF). Let (Ω,F ,P) be a probability triple and let X be a

Rm valued RV. Then the joint distribution function (JDF) or joint

cumulative distribution function (JCDF), FX(x) : Rm → [0, 1] is

defined as

FX(x) = P(∩m
i=1(Xi ≤ xi)) = P(X1 ≤ x1, . . . , Xm ≤ xm)

= P ({ω : X1(ω) ≤ x1, . . . , Xm ≤ xm}) ,

where X = (X1, . . . , Xm) and each Xi ∈ R, and x = (x1, . . . , xm) ∈ Rm.

Why do we need this? Well, lets say we do two measurements, X and
Y . What does P(X ≤ x, Y ≤ y) mean? Let Z = (X,Y ), then consider this
as a R2 valued RV, as such we can write

FZ(z) = FX,Y (x, y) = P(X ≤ x, Y ≤ y).

The above extends to any finite number of random variables.
Lets now say that we have two random variables X,Y and we wish to

compute something like

E [X + Y ], E [XY ], E [XrY s]

etc. then we need the joint distribution function to compute the above
expecations.

From the above motivation, we would expect that each component of a
Rm random variable is again a random variable:

Theorem 2.37. Let (Ω,F ,P) be a probability triple and let Z be a Rm

valued RV, then for any i = 1, . . . ,m, Zi is a R-valued RV. Its distribution

function

FZi(zi) = P(Zi ≤ zi)

= P(Z1 ≤ ∞, . . . , Zi−1 ≤ ∞, Zi ≤ zi, Zi+1 ≤ ∞, . . . , Zm ≤ ∞)

is called the marginal distribution.
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Proof. Let us prove this in the case when m = 2, that is, let Z = (X,Y ).

Let us show that X is a R valued RV. We do this by showing that

X [−1]((−∞, x)) ∈ F

What do we mean by X [−1]? We mean,

X [−1]((−∞, x)) = {ω ∈ Ω : X(ω) ≤ x} = {ω ∈ Ω : X(ω) ≤ x, Y (ω) <∞}

= Z [−1]((−∞, x)× (−∞,∞)) ∈ F

where the final step follows from the definition of Z being a R2-valued RV.

We have seen the notion of independence of two events in Definition 1.18
or of a sequence of events in Definition 1.20. Recall that independence
amounts to having the probability of the joint occurrence of the events to
be given by the product of the probabilities of each of the events.

We can use the definition of independence of two events to define the
independence of two random variables using their distribution functions.

Definition 2.38 (Independence of Two RVs). Consider an R2-valued RV

X := (X1, X2). Then the R-valued RVs X1 and X2 are said to be indepen-

dent or independently distributed if and only if

P(X1 ≤ x1, X2 ≤ x2) = P(X1 ≤ x1)P(X2 ≤ x2)

or equivalently,

FX1,X2(x1, x2) = FX1(x1)FX2(x2) ,

for any pair of real numbers (x1, x2) ∈ R2.

The above definition can be extended to a sequence of random variables
in the same way as in Definition 1.20.

2.6.1 Discrete random vectors

Let us specify the above fairly abstract concepts into something tangible,
we start with discrete random vectors.

Definition 2.39. Let (Ω,F ,P) be a probability triple and let Z be a Rm

valued RV, we say that Z is a discrete random variable if it takes values

in an enumerable set Z. The joint probability mass function fZ of Z is

the function fZ : Rm → [0, 1] defined as follows

fZ(z) := P(Z = z) = P({ω : Z(ω) = z}) =

{
θh if z = zh ∈ Z
0 otherwise



CHAPTER 2. RANDOM VARIABLES 34

The above definition is easier to grasp in the 2-d case. Let Z = (X,Y ) ∈
R2 and let X and Y be two enumerable sets and consider their product
Z = {(xi, yj) : i = 1, . . . , j = 1, . . .} ⊂ R2 and we have θi,j = P(X = xi, Y =
yj) > 0, then the JPMF can be written as

fX,Y (x, y) := P(X = x, Y = y) = P({ω : X(ω) = x, Y (ω) = y})

=

{
pi,j if x = xi, y = yi, (xi, yi) ∈ Z
0 otherwise

In this case we can quite easily compute also themarginal distribution
and the marginal probability mass function as follows: Say we have X
and Y as above, and lets compute the marginal distribution for X, according
to the definition it is

FX(x) = FX,Y (x,∞) = P(X ≤ x, Y ≤ ∞)

= P({ω : X(ω) ≤ x} ∩ {ω : Y (ω) ≤ ∞})

now since Y is also discrete, i.e. taking values y1, y2, . . . we can write the
above as

{ω : Y (ω) ≤ ∞} =
⋃
j

{ω : Y (ω) = yj} :=
⋃
j

Aj

And clearly all Aj are mutually exclusive we can thus write

FX(x) = P
(
{ω : X(ω) ≤ x} ∩

(⋃
j

Aj

))
=
∑
j

P({ω : X(ω) ≤ x} ∩Aj)

=
∑
xi≤x

∑
j

pi,j

if we now define pi =
∑

j pi,j then we simply have

FX(x) =
∑
xi≤x

pi

which is the same as if we had defined X alone as a discrete random variable.
From the above it is also clear that the marginal probability mass function
is given by

fX(x) := P(X = x) = P({ω : X(ω) = x}) =

{
pi if x = xi ∈ X
0 otherwise
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2.6.2 Continuous random vectors

Arguably the continuous random variables are easier:

Definition 2.40. Let (Ω,F ,P) be a probability triple and let Z be a Rm

valued RV. We say that Z is a continuous random variable if there exists a

piecewise-continuous function fZ : Rm → [0,∞), called the joint probabil-

ity density function of Z such that

FZ(z) = P(Z ≤ z) =

∫ z1

−∞
· · ·
∫ zm

−∞
fZ(v1, . . . , vm)dv1 . . . dvm.

The above definition is easier to grasp in the 2-d case. Consider Z =
(X,Y ) ∈ R2 then the joint density function satisfies

FX,Y (x, y) = P(X ≤ x, Y ≤ y) =

∫ x

−∞

∫ y

−∞
fX,Y (u, v)dudv

In this case we can quite easily compute also themarginal distribution
and the marginal probability mass function as follows: Say we have X
and Y as above, and lets compute the marginal distribution for X, according
to the definition it is

FX(x) = FX,Y (x,∞) = P(X ≤ x, Y ≤ ∞)

=

∫ x

−∞

∫ ∞

−∞
fX,Y (u, v)dudv

Now let us define

fX(x) =

∫ ∞

−∞
fX,Y (x, v)dv

then

FX(x) =

∫ x

−∞
fX(u)du.

This means that by Definition 2.15 X is a continuous random variable with
density fX .

For independent random variables we get

Theorem 2.41. Consider two independent continuous R valued RVs, X,Y .

Then

fX,Y (x, y) = fX(x)fY (y).
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Proof. Now using Definition 2.38 together with properties of interals we get

FX,Y (x, y) = FX(x)FY (y) =

∫ x

−∞
fX(u)du

∫ y

−∞
fY (v)dv

=

∫ x

−∞
fX(u)

(∫ y

−∞
fY (v)dv

)
du

=

∫ y

−∞

∫ x

−∞
fX(u)fY (v)dudv.

As we saw in the chapter about R valued RVs, we can look at functions
of RVs. The first thing we need is an extended notion of Borel.

Definition 2.42. We say that a function g : Rm → Rk is Borel, if we

denote Σr the Borel sigma algebra on Rr, r = 1, . . . (see Section 1.2.2) and

for every A ∈ Σk

g[−1](A) ∈ Σm.

Lemma 2.43. Let X be an Rm valued RV and let g : Rm → Rk be Borel.

Then g(X) is a Rk valued RV.

Exercise 2.44. Prove the above lemma in the case when k = 1.

2.6.3 Properties of expectations

Now that we know what a joint distribution function is, we can make sense
of for instance

E [X + Y ]

Let us list the immediate properties of the expectation here

Theorem 2.45. Properties of the expectation

1. If X ∈ L1(P) is an R valued RV and α ∈ R, then

E [αX] = αE [X]

2. If X,Y ∈ L1(P) are R valued RV, then

E [X + Y ] = E [X] + E [Y ].

3. If X,Y ∈ L2(P) are independent R valued RV, then

E [XY ] = E [X]E [Y ].
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4. If X,Y ∈ L1(P) are R-valued RVs then if X ≤ Y a.s., then

E [X] ≤ E [Y ].

5. Let X be an R-valued RV then if A ⊂ R is Borel, then

E [11A(X)] = P(X ∈ A)

Proof. We will only prove the above in the case of continuous random vari-

ables: For 1 we note that the linearity of integrals we have

E [αX] =

∫ ∞

−∞
(αx)dF (x) = α

∫ ∞

−∞
xdF (x) = αE [X].

Let us now consider 2, which requires the concept of marginals,

E [X + Y ] =

∫ ∞

−∞

∫ ∞

−∞
(x+ y)dFX,Y (x, y) =

∫ ∞

−∞

∫ ∞

−∞
xdFX,Y (x, y)

+

∫ ∞

−∞

∫ ∞

−∞
ydFX,Y (x, y) = IX + IY

Now

IX =

∫ ∞

−∞
xdFX,Y (x, y) =

∫ ∞

−∞
x

(∫ ∞

−∞
fX,Y (x, y)dy

)
dx

=

∫ ∞

−∞
xfX(x)dx = E [X].

To prove 3 note that since X and Y are independent, then from Theo-

rem 2.41 we have fX,Y (x, y) = fX(x)fY (y) which gives us

E [XY ] =

∫ ∞

−∞

∫ ∞

−∞
xydFX,Y (x, y) =

∫ ∞

−∞

∫ ∞

−∞
xyfX(x)fY (y)dxdy

=

∫ ∞

−∞
xfX(x)

(∫ ∞

−∞
yfY (y)dy

)
dx

=

(∫ ∞

−∞
xfX(x)dx

)(∫ ∞

−∞
yfY (y)dy

)
= E [X]E [Y ].

2.6.4 Lp is a normed vector space

Definition 2.46. We say that a set X is a vector space if there is a notion

of addition, and a notion of multiplication with scalars, such that
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1. For X,Y ∈ X, we have X + Y ∈ X,

2. For a scalar α ∈ R we have αX ∈ X if X ∈ X.

Definition 2.47. We say that a set X is a normed vector space if it is a

vector space and the following holds true: there is a function ∥ · ∥ : X → R
(called a norm) such that

1. ∥X∥ ≥ 0 for any X ∈ X,

2. ∥X∥ = 0 if and only if X = 0,

3. For every vector X ∈ X and every α ∈ R, one has

∥αX∥ = |α|∥X∥

4. The triangle inequality holds, that is, for X ∈ X and Y ∈ X we have

∥X + Y ∥ ≤ ∥X∥+ ∥Y ∥.

Theorem 2.48. Let (Ω,F , P ) be a probability triple, then the set of random

variables Lp(P) for 1 ≤ p <∞ is a normed vector space, with norm

∥X∥Lp(P) = (E [|X|p])
1
p

and with X = Y in Lp(P) if X(ω) = Y (ω) for a.e ω ∈ Ω with respect to P.
That is P({ω ∈ Ω, X(ω) = Y (Ω)) = 0.

How would we prove such a theorem? Well, we basically need to verify
all conditions in Definitions 2.46 and 2.47. Verifying Definition 2.46 and
conditions 1,2,3 of Definition 2.47 is left to you to verify. We will however
prove the triangle inequality using Hölders inequality:

Theorem 2.49. Let X ∈ Lp(P) and Y ∈ Lq(P) with 1
p +

1
q = 1, for 1 < p <

∞, then

E [XY ] ≤ E [|X|p]1/p E [|Y |q]1/q.

Lemma 2.50. Let ϕ : R → R be a convex function, and consider numbers

x1, x2 and parameter t ∈ [0, 1], then

ϕ(tx1 + (1− t)x2) ≤ tϕ(x1) + (1− t)ϕ(x2).

Lemma 2.51. Let (Ω,F ,P) be a probability triple and let X ∈ L1(P) be a

R-valued RV. Then if ϕ(X) ∈ L1(P), where ϕ : R → R is a convex function,

we have

ϕ(E [X]) ≤ E [ϕ(X)].
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We will prove the triangle inequality in the case that p = 2 (we leave
p ̸= 2 as an exercise), that is in Theorem 2.49 we have p = q = 2, hence

E [|X + Y |2] = E [|X + Y ||X + Y |] ≤ E [(|X|+ |Y |)|X + Y |]

≤
(
E [|X|2]1/2 + E [|Y |2]1/2

)
E [|X + Y |2]1/2

in the first inequality we used the triangle inequality for the absolute value
and in the last inequality we used Theorem 2.49 with p = q = 2. Dividing
both sides by E [|X + Y |2]1/2 gives

E [|X + Y |2]1/2 ≤ E [|X|2]1/2 + E [|Y |2]1/2

or equivalently

∥X + Y ∥L2(P) ≤ ∥X∥L2(P) + ∥Y ∥L2(P),

which proves the triangle inequality. For the case of p ̸= 2 one does

E [|X + Y |p] = E [|X + Y ||X + Y |p−1] ≤ E [(|X|+ |Y |)|X + Y |p−1]

and then apply Hölders inequality with q = p−1
p .

Theorem 2.52. The following are consequences of Hölders inequality

1. If X ∈ Lp(P) and Y ∈ Lq(P) then XY ∈ L1(P) if 1
p + 1

q = 1.

2. If X ∈ Lr(P) then X ∈ Ls(P) for 1 ≤ s ≤ r <∞.

3. If X ∈ Lp(P) and Y ∈ Lq(P) then XY ∈ Lr(P) if 1
p + 1

q = 1
r .

Proof. Statement 1 follows immediately from Theorem 2.49.

To prove 2. First apply Hölders inequality with p to be chosen

E [|X|s] = E [|X|s × 1] ≤ E [|X|sp]1/p E [1q]1/q.

Now choose p = r/s ≥ 1 which gives

E [|X|s] ≤ E [|X|r]
s
r

or equivalently

∥X∥Ls(P) ≤ ∥X∥Lr(P).

To prove 3. Apply Hölders inequality with the pair (s, h) and get

E [|XY |r] = E [|X|r|Y |r] ≤ E [|X|rs]1/s E [|Y |rh]1/h
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now choose h = p
p−r and s = s−1

s = p
r which gives

E [|XY |r] ≤ E [|Y |
pr
p−r ](p−r)/p E [|X|p]r/p

the last term is finite but what about the expectation of Y , well note that

pr

p− r
= q.

The same ideas as in Theorem 2.52 can be extended to a product of k
random variables. Here the Hölder exponents become

∑k
i=1

1
pi

= 1/r. Try
this out for yourself!

Functions of random variables

What we saw above with moments, i.e. powers of random variables is a
special case of functions of random variables. Often we are interested in
functions of random variables, like correlation etc. Let us define what we
mean with the expectation of a random variable.

Definition 2.53 (Expectation of a function of a RV). The Expectation of

a function g(X) of a random variable X is defined as:

E(g(X)) :=

∫
g(x)dF (x) =


∑
x

g(x)f(x) if X is a discrete RV∫ ∞

−∞
g(x)f(x)dx if X is a continuous RV

provided E(g(X)) exists, i.e.,
∫
|g(x)|dF (x) <∞.

Remark 2.54. Notational convenience: Note in the above how we wrote

E [g(X)] =

∫
g(x)dF (x)

even if X was discrete. This can be made rigorous by the introduction of

point measures (dirac measures or atomic measure), we will however skip

that part in this course and instead work with the understanding that the

integral is a sum in the discrete case.

The above can be taken as a defintion, but why does it make sense? It
is actually something we can prove, and its called the law of the unconcious
statistician. We will only prove this in the case of one-to-one monotone
transformations. Lets do it for increasing functions f . If we think of the
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transformation part we note that using the direct method that if X is a
random variable and f is a function then for Y = f(X) the distribution is

FY (y) = P [X ∈ {x : f(x) ∈ (−∞, y]}]

and fY = d
dyFY (y), so by a change of variables we get y = f(x)

E [Y ] =

∫
yfY (y)dy =

∫
f(x)fY (f(x))

df

dx
dx

now, d
dxFY (f(x)) = fY (f(x))

df
dx , but since f is monotone and increasing we

get FY (f(x)) = P (f(X) ≤ f(x)) = P [X ≤ x] = FX(x). This gives that

E [Y ] =

∫
yfY (y)dy =

∫
f(x)fY (f(x))

df

dx
dx =

∫
f(x)fX(x)dx

Now all of this mean that f(X) is a random variable and one can question
in what Lp(P) it lies, i.e. what value of p? Well, the existence of the
expectation is equivalent to saying that f(X) ∈ L1(P). But actually, since if
X ∈ R is a real valued random variable with density fX where fX : R → R
then we can actually view everything from the perspective of integrability
in R. That is, we can define

Lp(F ) = {f | f : R → R,
∫

|f(x)|pdF (x) <∞}

this space of functions from R to R inherits all properties of Lp(P) and as
such it is a normed vector space.

2.6.5 Conditional Random Variables

Often we will have a condition where one of the two random variables that
make up a random vector (X1, X2) already occurs and takes a value. And
we might want to compute the probability of the occurrence of the other
random variable given this conditional information. For this all we need
to do is extend the idea of conditional probabilities to R2-valued random
variables.

Definition 2.55. Let (X,Y ) be a R2 valued random variable, and let A ⊂ R
be a Borel set such that P(Y ∈ A) > 0 then define the conditional distribution

function of X given that Y ∈ A as

FX|Y (x | A) := P(X ≤ x, Y ∈ A)

P(Y ∈ A)
.

Lemma 2.56. Let (X,Y ) be a R2 valued random variable, then

FX|Y (x | (−∞, y))FY (y) =
FX,Y (x, y)

FY (y)
FY (y) = FX,Y (x, y).
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If Y is a discrete random variable and fY (y) > 0 the above definition is
well defined for A = {y} and we can write

FX|Y (x | y) := P(X ≤ x, Y = y)

P(Y = y)
.

If however Y is continuous we know from Theorem 2.18 that P(Y =
y) = 0 and as such Definition 2.55 does not apply and we need another
definition. Fix a point y ∈ R such that fY (y) > 0 and let ϵ > 0, then define
Uϵ = [y − ϵ, y + ϵ], hence P(Y ∈ Uϵ) > 0 since fY is piecewise continuous.
We can now compute

FX|Y (x|Uϵ) =
P(X ≤ x, Y ∈ Uϵ)

P(Y ∈ Uϵ)
=

∫ x
−∞

(∫ y+ϵ
y−ϵ fX,Y (u, v)dv

)
dv∫ y+ϵ

y−ϵ fY (v)dv

=

∫ x
−∞

(
1
2ϵ

∫ y+ϵ
y−ϵ fX,Y (u, v)dv

)
dv

1
2ϵ

∫ y+ϵ
y−ϵ fY (v)dv

from this we can ”define”

FX|Y (x | y) := lim
ϵ→0

FX|Y (x|Uϵ) =

∫ x

−∞

fX,Y (u, y)

fY (y)
du.

Why ”define”, well basically we need to make sure what happens if we are
at points of discontinuity of fX,Y (u, v) and fY (y). This does not turn into
any problems as there are only distinct points of discontinuity for fY (y)
and fX,Y (x, y) which all have probability zero and dont contribute to the
integral.

Definition 2.57 (Conditional PDF or PMF). Let (X,Y ) be a R2 valued RV.

Then the conditional probability mass / density function is defined

as

fX|Y (x | y) =
fX,Y (x, y)

fY (y)

if fY (y) > 0

Lemma 2.58. Let (X,Y ) be a R2 valued RV. Then

fX|Y (x | y)fY (y) = fX,Y (x, y)

where the left hand side is interpreted as 0 if fY (y) = 0.

Exercise 2.59. Consider two independent fair coin tosses (2 sided), i.e.

X,Y ∼ Bernoulli(1/2), and let 1 be heads and 0 is tails. Let Z = X + Y ,

what is the PMF of Z given X. Once, you have this, what is the joint PMF

of (Z,X)?
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These definitions allows us to construct conditional expectations, like

E [X | Y = y] =

∫ ∞

−∞
xfX|Y (x | y)dx.

But it also allows for the following very useful property

Theorem 2.60 (The tower property). Let (X,Y ) be a R2 valued RV where

E [X] is well defined. Then

E [E [X | Y ]] = E [X].

In the above we introduced a new notation, namely E [X | Y ], what is
this? Denote g(y) = E [X | Y = y], then define

E [X | Y ] := g(Y ).

Proof. We will also prove this only for continuous RVs, the discrete is an

exercise!!

Lets begin by writing down the LHS

E [E [X | Y ]] = E [g(Y )] =

∫ ∞

−∞
g(y)fY (y)dy =

∫ ∞

−∞
E [X | Y = y]fY (y)dy

=

∫ ∞

−∞

(∫ ∞

−∞
xfX|Y (x | y)dx

)
fY (y)dy

=

∫ ∞

−∞

∫ ∞

−∞
xfX|Y (x | y)fY (y)dxdy

=

∫ ∞

−∞

∫ ∞

−∞
xfX,Y (x, y)dxdy = E [X].

We switched the order of integration which follows by Fubinis theorem and

our assumption that E [X] is well defined, i.e. E [|X|] < ∞. In the last

stages we used Lemma 2.58 and the definition of marginal density.

2.6.6 Mixed random variables

We have dealt with both discrete and continuous random variables, but what
about mixed random variables? For instance, if X is continuous and Y is
discrete, what is (X,Y )? Actually it is neither, but we have all the tools to
deal with it, we just have to mix the two concepts.
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2.7 Examples Of Modeling

Now that we have developed the language of

1. Probability

2. Random variables

3. Dependence and independence

4. Conditional distribution etc.

We can take some common problems encountered in data science and
model it.

2.7.1 Email spam filtering

Lets say that you wish to construct an email filter that takes as input an
email and predicts if it is spam or not.

• The experiment, the next incoming email.

• Ω = {All strings of length 1000}, that is, an outcome is one email (We
limit to the first 1000 characters, but that is arbitrary).

• Ω is finite, so the σ-algebra is just all subsets of Ω, i.e. the power set.

• The probability measure P is unknown, but it is there, not all emails
are equally probable. This is crucially the case, because we want to
estimate probabilities based on the data.

• To each email, there is a function that tells us if it is a spam or not.
We could take this as X and X : Ω → {0, 1}, 0 would be not spam
and 1 would be spam.

This is our first setup of the problem. We are recieving an email, this is
the experiment. It is either spam or not spam, and this is the value of the
RV. X. However our initial problem was to predict if the email was a spam
or not, i.e. we wish to use some information in the email and construct a
decision function, which takes the email and outputs if it is a 1 or a 0. We
pretty much would like to know how the unknown X works using a set of
observations.

We can use many things, but one of the simplest would be. Let Z : Ω →
{0, 1} be a function that is 1 if the email contains the word “donate” and
hope that Z is a good predictor of X. But how do we phrase that?

P(X = 1 | Z = 1) > P(X = 1)
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if the above inequality holds, we know that if “donate” is in the email, then
it is more likely to be spam. It is thus a valuable predictor. If P(X = 1 |
Z = 1) = 1 then it is a perfect predictor, since if you know Z = 1 then you
know that X = 1.

If however

P(X = 1 | Z = 1) = P(X = 1)

then X and Z are independent, i.e. knowing Z gives nothing about X.
You have just seen the simplest case of a word based prediction model,

in practice however you would use several words and in that case its called
a bag of words model. One particularly successful model is Naive Bayes
which is very close to what we did above, but with more words.

2.7.2 Number of website requests during a day

Lets say that you are monitoring the number of website requests, and let us
assume that each request requires some processing work to be commissioned.
That is, what you want to know is, how much resources should I give?

In this particular problem, the goal would be to predict the number of
requests on a given day in advance so that there is time to add resources.

• The experiment, recording the website requests during a day. For each
website request you log a bunch of information (where it came from,
what day, what the request was, etc.)

• Ω = {all sequences of all valid website requests}. Since we are record-
ing during a day, we can have any number of requests. Often, however
this set is enumerable. The choice here is fairly arbitrary of what Ω
should be, we could just as well define Ω to be an abstract set which
contains all possible outcomes of the experiment. With this we mean,
all possible information that can be recorded is recorded in ω.

• Here we can as σ-algebra, F choose all possible subsets of Ω, i.e. the
power set. If we would go the route of taking Ω to be the abstract set,
then F is unknown, but it is here.

• Again, the probability measure P is here, but unknown. In this case,
very very very hard to estimate, so we will not even try to.

• X : Ω → {0, 1, 2, . . .}, a function that takes a sequence of valid website
requests and outputs the number of requests. With the simpler Ω we
know that X is measurable, however for the abstract Ω we have to
assume it is. (This is crucial, we assume that what we observe is a
random variable!!! This is a modeling assumption.)
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Our goal here is to find a good way to predict X beforehand. Specifi-
cally, since it can take on many values we want to estimate the distribution
function

FX(x) = P(X ≤ x).

Lets say that if X > 10 we need to commission extra resources, that is we
would then like to know

P(X > 10) = 1− FX(10).

Let’s say that some information about the outcome can be known, like
the day of the week. Call this random variable Z : Ω → {1, 2, 3, 4, 5, 6, 7},
where the number is the day of week. It is likely that X and Z are not
independent and that the conditional distribution of X given Z, which is

FX|Z(x | z)

can instead be estimated. It is fairly reasonable to assume that the amount
of traffic is different for different days, (compare wednesday to saturday for
a work related website). Here we can take decisions based on

P(X > 10 | Z = z) = 1− FX|Z(x | z).

In the case of a more abstract Ω we could envision other random variables
Y which contains some information, say its 1 if today is a holiday. We could
then try to estimate

P(X > 10 | Z = z, Y = y) = 1− FX|Z,Y (x | z, y).

2.7.3 Summary

You have now seen to common estimation examples where we defined what
could be known and left the unknown. We assumed that the unknown
quantities existed (this is a modeling assumption).

Here is a modeling procedure which is always defined

• Lets say you are doing some experiment, say, looking at an image.

• Let Ω be all possible outcomes where you do not specify what an
outcome is, it can be seen as unknown.

• Assume that there are unknown F and P, that is we assume that
underlying our problem there is a (Ω,F ,P), i.e. a probability triple,
which is unknown.
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• We assume that some information about the image, say if it contains a
cat or not (1 or 0) is knowable, call that value X. We further assume
that X is a random variable with respect to the probability triple
(Ω,F ,P).

Now, since everything is unknown but assumed to be there, and all we
care about is whether or not there is a cat in the image. We could try to
estimate

FX(x) = P(X ≤ x)

and since X only takes values 0 and 1, it would be enough to estimate

P(X = 1).

If we do independent repeats of our experiment and record if its a cat or not,
then it is reasonable to expect that the average would be a good estimate
for P(X = 1). Point being, we did not need to know (Ω,F ,P) in order to
estimate P(X = 1).

This idea is underlying many models, we assume that our repeated ex-
periments are independent and that the value we are looking at is a random
variable. This means we can “ignore” what (Ω,F ,P) actually is, but know
that we assume its well defined and there.



Chapter 3

Concentration and Limits

3.1 Concentration inequalities

In probability theory, concentration inequalities provide bounds on how a
random variable deviates from some value (typically, its expected value).

Theorem 3.1 (Markov’s inequality). Let (Ω,F ,P) be a probability triple

and let X ∈ L1(P) be a non-negative R-valued RV. Then,

P(X ≥ ϵ) ≤ E(X)

ϵ
, for any ϵ > 0 . (3.1)

Proof. Let Aϵ = [ϵ,∞) then by Lemma 2.8

11Aϵ(x) + 11Ac
ϵ
(x) = 1

as such we can write

X = X11Aϵ(X) +X11Ac
ϵ
(X) ≥ X11Aϵ(X) ≥ ϵ11Aϵ(X).

Now the inequalities are preserved when taking the expectation of both sides

(Theorem 2.45), and we get

E [X] ≥ ϵE [11Aϵ(X)] = ϵP(X ∈ Aϵ) = ϵP(X ≥ ϵ)

Let us look at some immediate consequences of Markov’s inequality.

48
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Proposition 3.2 (Chebychev’s inequality). For any RV X and any

ϵ > 0,

P(|X| > ϵ) ≤ E(|X|)
ϵ

P(|X| > ϵ) = P(X2 ≥ ϵ2) ≤ E(X2)

ϵ2

P(|X − E(X)| ≥ ϵ) = P((X − E(X))2 ≥ ϵ2) ≤ E(X − E(X))2

ϵ2
=

V(X)

ϵ2

In the above we interpret the expectations as ∞ if they dont exist. How-
ever if we want finite expressions then we would need X ∈ L1(P) for the
first inequality and X ∈ L2(P) for the second and third inequality.

Proof. All three forms of Chebychev’s inequality are mere corollaries (careful

reapplications) of Markov’s inequality.

Definition 3.3. We say that the sequence X1, X2, . . . of R-valued RVs is an

independent and identically distributed (i.i.d.) sequence of R-valued random

variables with distribution F , if for any n ∈ N we have that X1, . . . , Xn ∼ F

and that Z = (X1, . . . , Xn) is an Rn-valued RV with distribution function

FZ(x1, . . . , xn) = FX1(x1)FX2(x2) · · ·FXn(xn) =
n∏

i=1

F (xi).

We usually denote this with X1, . . . , Xn
IID∼ F .

Remark 3.4. This can quite easily be extended to sequences i.i.d. random

vectors with the trivial modifications.

One of the most fundamental aspects of statistics is the concept of ”con-
centration of measure”. As we saw in Chapter 1 one can motivate the
concept of probability as a long-term relative frequency. That is if we toss
a fair coin we expect that N(H, n) → 1

2 as n → ∞, however for any finite
number of tosses there is a probability that this can deviate from 1

2 (we
could for instance observe the unlikely event that we get all heads). We do
however expect that the probability of a large deviation to become smaller
as we observe more tosses, this is the phenomenon of concentration of mea-
sure. We will begin with a ”helper lemma” and then move on to prove a
fundamental concentration inequality called Hoeffdings inequality.

Lemma 3.5 (Hoeffdings lemma). Let (Ω,F ,P) be a probability triple

and suppose that X is a R-valued RV such that P(X ∈ [a, b]) = 1 for a < b.
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Then, for all λ ∈ R,

E [eλ(X−E [X])] ≤ exp

(
λ2(b− a)2

8

)
Proof. First we need to make sure that the left hand side is OK. First we

need to make sure that X ∈ L1(P) and then we need to make sure that

eλX ∈ L1(P). However the boundedness condition a ≤ X ≤ b immediately

implies this, since

a = E [a] ≤ E [X] ≤ E [b] = b

and the same thing holds for the exponential, i.e.

eλa = E [eλa] ≤ E [eλX ] ≤ E [eλa] ≤ eλa.

Now since eλx is convex we have

eλx ≤ b− x

b− a
eλa +

x− a

b− a
eλb

for all a ≤ x ≤ b. Hence if we let Y = X − E [X] we get

E [eλY ] ≤ b− E [Y ]

b− a
eλa +

E [Y ]− a

b− a
eλb =

b

b− a
eλa − a

b− a
eλb.

Now let h = λ(b− a), p = −a
b−a and L(h) = −hp+ ln(1− p+ peh), then

b

b− a
eλa − a

b− a
eλb = eL(h). (3.2)

Let us bound L from above, we will do that using basic calculus, first note

that

L(0) = ln(1) = 0

and

L′(h) = −p+ peh

1− p+ peh
=⇒ L′(0) = 0.

Let us now consider the second derivative,

L′′(h) =
peh

1− p+ peh
− (peh)2

(1− p+ peh)2

this is of the form y − y2 which cannot be larger than 1/4, as such we get

using Taylors theorem, that

L(h) ≤ h2

8
=
λ2(b− a)2

8

from (3.2) we now complete the lemma.
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Theorem 3.6 (Hoeffdings inequality (simple case)). Let (Ω,F ,P) be a prob-

ability triple and let X1, . . . , Xn
IID∼ F be R-valued RVs such that P(Xi ∈

[a, b]) = 1, then for any ϵ > 0 we get for Xn = 1
n

∑n
i=1Xi,

P(Xn − E [Xn] ≥ ϵ) ≤ e
− 2nϵ2

(b−a)2 .

Proof. Let Sn =
∑n

i=1Xi. Let s, t > 0 be positive numbers to be chosen,

then using Theorem 3.1 we get

P(Sn − E [Sn] ≥ t) = P(es(Sn−E [Sn]) ≥ est) (3.3)

≤ e−st E(es(Sn−E [Sn])) (3.4)

= e−st
n∏

i=1

E(es(Xi−E [Xi])) (3.5)

where in the last step we used the independence of X1, . . . together with

Theorem 2.45. Now using Lemma 3.5 with λ = s for each term in the

product, we get

e−st
n∏

i=1

E(es(Xi−E [Xi])) ≤ e−stes
2(b−a)2n/8 (3.6)

Notice now, that the value s was arbitrarily chosen and we can choose it to

make the right hand side as small as possible. That is we want to minimize

h(s) = s2
n(b− a)2

8
− st. (3.7)

This function is minimized at s∗ = 4t
n(b−a)2

, plugging that in we get

h(s∗) = s2
n(b− a)2

8
− st = − 2t2

n(b− a)2
. (3.8)

Assembling (3.3) and (3.6)–(3.8) we get

P(Sn − E [Sn] ≥ t) ≤ e
− 2t2

n(b−a)2 .

Replacing t = nϵ we get

P(Xn − E [Xn] ≥ ϵ) ≤ e
− 2nϵ2

(b−a)2 ,

which proves the theorem.
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Corollary 3.7. Let (Ω,F ,P) be a probability triple and let X1, . . . , Xn
IID∼ F

R-valued RVs such that P(Xi ∈ [a, b]) = 1, then for any ϵ > 0 we get for

Xn = 1
n

∑n
i=1Xi,

P(Xn − E [Xn] ≤ −ϵ) ≤ e
− 2nϵ2

(b−a)2 ,

furthermore

P(
∣∣Xn − E [Xn]

∣∣ ≥ ϵ) ≤ 2e
− 2nϵ2

(b−a)2 ,

Proof. Exercise!! Hint: In Theorem 3.6 we did not assume anything about

the sign of Xi.

Let us look at an application of this, namely that of constructing confi-
dence regions:

Lemma 3.8. [Estimating p in Bernoulli] Let X1, . . . , Xn
IID∼ Bernoulli(p).

Then for α ∈ (0, 1) we have for δ = 1√
n

√
1
2 ln
(
2
α

)
P(Xn − δ ≤ p ≤ Xn + δ) ≥ 1− α.

Remark 3.9. In the above, if we fix α = 0.05 we get δ ≈ 1.36√
n
.

Proof. We wish to apply Corollary 3.7. Note that a = 0, b = 1 in the

Bernoulli case, hence for a fix α and fix n we need to solve

α = 2e−2nϵ2

with respect to ϵ. We get

ϵ =
1√
n

√
1

2
ln

(
2

α

)
as such we get from Corollary 3.7 that

P

(
Xn − 1√

n

√
1

2
ln

(
2

α

)
≤ p ≤ Xn +

1√
n

√
1

2
ln

(
2

α

))

= 1− P

(∣∣Xn − p
∣∣ > 1√

n

√
1

2
ln

(
2

α

))
≥ 1− α.
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Remark 3.10. Computing multiple intervals for random variables which are

not necessarily independent is quite easy using the union bound. Actually,

we did it above when going from the one-sided to the two sided inequality,

see Corollary 3.7.

Suppose we havem sequences of random variables Z1 = (X11, X12, . . . , X1n),

. . . , Zm = (Xm1, . . . , Xmn). Where for each i the sequence Zi is i.i.d. but

Zi and Zj are not necessarily independent (they could all be the same for

instance). Assume that each one of them satisfies

P(| 1
n

n∑
j=1

Xij − E [X1j ]| ≥ ϵ) ≤ Ci

for every i and for some number Ci. Then

P(| 1
n

n∑
j=1

Xij − E [X1j ]| ≥ ϵ for some i) ≤
m∑
i=1

Ci

the complement of this is

P(| 1
n

n∑
j=1

Xij − E [X1j ]| < ϵ for all i) ≥ 1−
m∑
i=1

Ci.

So for instance if all of where Bernoulli(pi) then from the above and Lemma 3.8

we get that

P(
1

n

n∑
j=1

Xij − δ ≤ pi ≤
1

n

n∑
j=1

Xij + δ for all i) ≥ 1− α.

where δ = 1√
n

√
1
2 ln
(
2m
α

)
. This means that m appears in the logarithm, and

the increase of δ w.r.t. m is fairly slow. We will use this fact later when

we produce multiple intervals for different metrics. This is equivalent to

Bonferroni correction in multiple testing.

So the Hoeffding inequality is actually quite useful (extremely), but the
restriction that the random variables are bounded is a heavy restriction.
However, if we look at the proof of Theorem 3.6 we note that everything
follows from Lemma 3.5, so if the estimate in Lemma 3.5 holds, then so
should Theorem 3.6. With this in mind, let us define

Definition 3.11. A R valued random variable X is said to be sub-Gaussian

with parameter λ if

E [es(X−E [X])] ≤ e
s2λ2

2 , for all s.
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and a local version

Definition 3.12. A R valued random variable X is said to be sub-exponential

with parameter λ if

E [es(X−E [X])] ≤ e
s2λ2

2 , for all |s| ≤ 1

λ
.

Both of these can be used in the proof of Theorem 3.6, however in the
case of sub-exponential we have to take care of the restriction on s which
actually yields a weaker bound.

Theorem 3.13. Let (Ω,F ,P) be a probability triple and let X1, . . . , Xn
IID∼ F

be R-valued sub-Gaussian RVs with parameter σ then for any ϵ > 0 we get

for Xn = 1
n

∑n
i=1Xi,

P(Xn − E [Xn] ≥ ϵ) ≤ e−
nϵ2

2σ2 .

For the sub-exponential case we get a weaker bound for the tails. The
reason for this is the fact that the bound on EsX only holds for small s, the
resulting estimate thus differentiates between small and big ϵ. We can see
in the estimate below that for large ϵ the tail is exponential, i.e. e−ϵ, this in
one of the reasons for the name sub-exponential.

Theorem 3.14. Let (Ω,F ,P) be a probability triple and let X1, . . . , Xn
IID∼ F

be R-valued sub-exponential RVs with parameter λ then for any ϵ > 0 we get

for Xn = 1
n

∑n
i=1Xi,

P(Xn − E [Xn] ≥ ϵ) ≤ e−
ϵ2n
2λ2 ∨ e−

(ϵ+1)n
2λ .

Proof. Proceeding as in the proof of (3.3) we get

P(Sn − E [Sn] ≥ t) = e−st
n∏

i=1

E(es(Xi−E [Xi])) (3.9)

Consider now s ≤ 1
λ and apply Definition 3.12 for each term in the product,

we get

e−st
n∏

i=1

E(es(Xi−E [Xi])) ≤ e−ste
s2λ2n

2 (3.10)

If we proceed as in Theorem 3.6 we consider

h(s) =
s2λ2n

2
− st
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and note again that the function is minimized at s∗ = t
nλ2 . If now s∗ ≤ 1

λ

we get

P(Sn − E [Sn] ≥ t) ≤ e−
t2

2nλ2 (3.11)

However if s∗ > 1/λ, that is if t > nλ we get can only take

h(1/λ) =
n

2
− 1

λ
t < −n

2
− t

2λ

that is,

P(Sn − E [Sn] ≥ t) ≤ e−
n
2
− t

2λ . (3.12)

Assembling (3.11) and (3.12) we get

P(Sn − E [Sn] ≥ t) ≤ e−
t2

2nλ2 ∨ e−
n
2
− t

2λ , (3.13)

where a ∨ b = max(a, b). Now again replacing t = nϵ we get

P(Xn − E [Xn] ≥ ϵ) ≤ e−
ϵ2n
2λ2 ∨ e−

(ϵ+1)n
2λ .

Lemma 3.15. The following properties hold

1. Let X be a sub-Gaussian RV with parameter λ, then αX is sub-

Gaussian with parameter |α|λ.

2. Let X be a sub-exponential RV with parameter λ, then αX is sub-

exponential with parameter |α|λ.

3. A sub-Gaussian RV X with parameter λ is sub-Exponential with pa-

rameter λ.

4. A bounded RV X, i.e. P(X ∈ [a, b]) = 1, then X is sub-Gaussian with

parameter (b− a)/2. Specifically a Bernoulli RV is sub-Gaussian with

parameter 1/2.

5. If X is sub-Gaussian with parameter λ then Z = X2 is sub-exponential

with parameter 8λ2.

6. if X,Y are independent and sub-Gaussian with parameter σ1, σ2, then

X + Y is sub-Gaussian with parameter
√
σ21 + σ22.
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Proof. Let Z = X2 − E [X2], use the power series representation of the

exponential (we have not really gone through the theory for this one, but

this is OK by the dominated convergence theorem which is outside the scope

of this course)

E [esZ ] = 1 +

∞∑
k=2

sk E [Zk]

k!

First use the elementary fact that (a+ b)k ≤ 2k−1(ak + bk) (for k > 1 since

the power function is convex), we get

E [Zk] = E [(X2 − E [X2])k] ≤ 2k−1(E [X2k] + (E [X2])k)

Now by Hölders inequality Theorem 2.49

E [X2]k ≤ E [X2k]

Thus we get

E [esZ ] ≤ 1 +
∞∑
k=2

sk2k E [X2k]

k!

Now, note that Theorem 3.13 gives us bounds for the moments of X above,

i.e. using the fact that (for the first inequality see Exercise 5.18) we get

E [Xk] =

∫ ∞

0
P(|X|k > t)dt ≤ 2

∫ ∞

0
e−

t2/k

2λ2 dt = (2λ2)k/2k

∫ ∞

0
e−uuk/2−1du

= (2λ2)k/2kΓ(k/2)

Going back to our problem we get (using that kΓ(k) = k!)

E [esZ ] ≤ 1 +

∞∑
k=2

sk2k(2λ2)k2k!

k!

≤ 1 + 2

∞∑
k=2

(4sλ2)k

≤ 1 + 2(4sλ2)2
∞∑
k=0

(4sλ2)k

≤ 1 + 64s2λ4 ≤ e32s
2λ4

the last sum is a geometric sum and is less than 2 if 8sλ2 < 1, i.e. s < 1
8λ2 .

Thus we see that X2 is sub-exponential with parameter 8λ2.
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Distribution sub-exponential sub-Gaussian

Gaussian Yes Yes

Bernoulli Yes Yes

Uniform Yes Yes

Bounded Yes Yes

Exponential Yes No

χ2 Yes No

Weibull (k ≥ 1) Yes No

Laplace Yes No

Pareto No No

Lognormal No No

Figure 3.1: Examples of distributions that are sub-exponential and sub-

Gaussian

The question is now, what distributions are sub-Gaussian and which
are sub-exponential? See Fig. 3.1. We will be using these concentration
inequalities in the course to prove that the algorithms we are interested in
is actually doing what we want with high probability.

Exercise 3.16. For the Poisson distribution, we have

E [esX ] = eλ(e
s−1)

is this sub-Gaussian, sub-exponential or neither?

3.1.1 Random variables that are not exponentially integrable*

Both the sub-Gaussian and sub-exponential rely on the fact that E [esX ] <
∞, if we rewrite this for a continuous RV we get∫ ∞

−∞
esxfX(x)dx <∞

hence we need either that fX has finite support or we need that it decays
exponentially at infinity. This is why the sub-exponential for instance has
the restriction on the size of s, as in that case fX behaves like e−

1
λ
|x|, that

is ∫ ∞

−∞
esxe−

1
λ
|x|dx <∞, if and only if s <

1

λ
.

One could hope that there is still some concentration of measure in this
case. Our first observation is that the exponential integrability implies that
all moments exists, i.e. X ∈ Lp(P) for every 1 ≤ p < ∞. However, what if
we only have X ∈ Lp(P) for some 1 ≤ p <∞, what can we say then?
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Theorem 3.17. Lets say that X1, . . . , Xn
IID∼ F be R valued RVs. Suppose

that Xi ∈ L2s(P) and

|E [(Xi − E [Xi])
r]| ≤ σ2r!, for r = 2, 3, . . . , 2s

for a positive integer s > 1. Then if ϵ ∈ [0,
√
2nσ2] and s ≤ nσ2 we have

P(|Xn − E [Xn]| ≥ ϵ) ≤
(
4sσ2

ϵ2n

)s/2

.

If further, s ≥ ϵ2/(2nσ2) then we also have

P(|Xn| ≥ ϵ) ≤ 3e−
ϵ2n
12σ2 .

Proof. The proof uses Theorem 3.1 as Theorem 3.6, however now we cannot

use the exponential, instead we use powers. The power of E [|
∑

iXi|k] has
to computed, this can be done by carefully checking the combinatorics of the

terms and using the independence assumption. See the FDS book Theorem

12.5.

3.2 Convergence of Random Variables

This important topic is concerned with the limiting behavior of sequences
of RVs. We want to understand what it means for a sequence of random
variables {Xn}∞n=1 := X1, X2, . . . to converge to another random variable X,
when all RVs are defined on the same probability space (Ω,F ,P).

{Xi}ni=1 := X1, X2, X3, . . . Xn−1, Xn as n→ ∞ .

From a statistical or decision-making viewpoint, n → ∞ is associated with
the amount of data or information → ∞. More abstractly, we are interested
in what happens to the limiting RV X := limn→∞Xn when given the DFs
Fn(x) for each Xn.

We need different notions of convergence to characterize such a behav-
ior: two simplest behaviors are that the sequence eventually takes a con-
stant value θ, i.e. Xn approaches X ∼ Point Mass(θ) RV, or that val-
ues in the sequence continue to change but can be described by an un-
changing probability distribution, i.e., Xn approaches X ∼ F (x). See
https://en.wikipedia.org/wiki/Convergence_of_random_variables.

Definition 3.18 (Convergence in Distribution (or Weakly, or in Law)).

Let (Ω,F ,P) be a probability triple and let X1, X2, . . . , be a sequence of RVs

https://en.wikipedia.org/wiki/Convergence_of_random_variables
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and let X be another RV. Let Fn denote the DF of Xn and F denote the

DF of X. The we say that Xn converges to X in distribution, and write:

Xn ⇝ X

if for any real number t at which F is continuous,

lim
n→∞

Fn(t) = F (t).

The above limit, by (2.2) in our Definition 2.2 of a DF, can be equivalently

expressed as follows:

lim
n→∞

P( {ω : Xn(ω) ≤ t} ) = P( {ω : X(ω) ≤ t} ).

Convergence in distribution does not in general imply that the sequence
of corresponsing probability density functions will also converge. Consider
for example RV Xn with density 11(0,1)(x)(1 − cos(2πnx)). These RVs con-
verge in distribution to X ∼ Uniform(0, 1), but their densities (PDFs) do
not converge at all as evident in Fig. 3.2.

The other way around is however true:

Lemma 3.19. Let (Ω,F ,P) be a probability triple and let X1, X2, . . . , be a

sequence of RVs and let X be another RV. Let fn denote the PDF of Xn

and f denote the PDF/PMF of X. If

fn(x) → f(x), ∀x ∈ R,

then

Xn ⇝ X.

From Lemma 3.19 we see that for a discrete sequence of RVs Xn to
converge in distribution to another discrete RV X taking values in Z+ =
{0, 1, 2, . . .}, it is sufficient to show that limn→∞ P(Xn = x) = P(X = x)
for each x ∈ Z+. We will use this fact to prove why we can approximate
Binomial RVs by a Poisson under some limiting conditions.

Theorem 3.20. Let Xn ∼ Binomial(n, λ/n) for n = 1, . . . and let Y ∼
Poisson(λ), then

Xn⇝Y.

Proof. Let Xn ∼ Binomial(n, θ = λ/n) and Y ∼ Poisson(λ) for a fixed λ.

We need to show that

lim
n→∞

P(Xn = x) = P(Y = x) = e−λλx/x!
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Figure 3.2: PDF fXn(x) := 11(0,1)(x)(1 − cos(2πnx)) of the RV Xn [the

left sub-figure] and its DF Fn(x) :=
∫ x
−∞ 11(0,1)(v)(1 − cos(2πnv))dv [the

right sub-figure], for n = 1 [red ’- -’], n = 10 [blue ’-.’], and n = 100

[green ’-’], respectively. One can see clear convergence of the DFs Fn to

11(0,1)(x)x, the DF of the Uniform(0, 1) RV, while the corresponding PDFs

fn(x) keep oscillating wildly with n across [0, 2] about 11(0,1)(x), the PDF of

the Uniform(0, 1) RV X. Thus giving a counter-example to the claim that

convergence in DFs does not imply convergence in PDFs.
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for any x ∈ {0, 1, 2, 3, . . . , n}.

P(Xn = x) =

(
n

x

)(
λ

n

)x(
1− λ

n

)n−x

First note that (
n

x

)(
λ

n

)x

=
n!

(n− x)!nx
λx

x!

By Stirlings formula this now converges to λx

x! . The last term(
1− λ

n

)n−x

=

(
1− λ

n

)n(
1− λ

n

)−x

Is the product of two terms, where the first tends to e−λ and the second

tends 1. We thus get

lim
n→∞

P(Xn = x) = P(Y = x)

which according to Lemma 3.19 gives Xn ⇝ Y .

The second notion of convergence of RVs is convergence in probability.

Definition 3.21 (Convergence in Probability). Let (Ω,F ,P) be a prob-

ability triple and let X1, X2, . . . , be a sequence of RVs and let X be another

RV. We say that Xn converges to X in probability, and write:

Xn
P−→ X

if for every real number ϵ > 0,

lim
n→∞

P(|Xn −X| > ϵ) = 0.

Once again, the above limit, by (2.1) in our Definition 2.1 of a RV, can be

equivalently expressed as follows:

lim
n→∞

P( {ω : |Xn(ω)−X(ω)| > ϵ} ) = 0.

Definition 3.22 (Convergence Almost Surely (or with Probability 1)).

Let (Ω,F ,P) be a probability triple and let X1, X2, . . . , be a sequence of RVs

and let X be another RV. We say that Xn converges to X almost surely (or

with probability 1/strongly) if

P
(
{ω ∈ Ω : lim

n→∞
Xn(ω) = X(ω)}

)
= 1,

denoted as

Xn
a.s.→ X
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This means that the values of Xn approach the value of X, in the sense
that events for which Xn does not converge to X have probability 0,

P
(
{ω ∈ Ω : lim

n→∞
Xn(ω) ̸= X(ω)}

)
= 0,

Another notion which is quite useful is the mean-square convergence (or
just L2 convergence) which is a special case of

Definition 3.23 (Convergence in Lp). Let (Ω,F ,P) be a probability triple

and let X1, X2, . . . ,∈ Lp(P) be a sequence of RVs and let X ∈ Lp(P) be

another RV. We say that Xn converges to X in Lp(P) if

∥Xn −X∥Lp(P) → 0.

Recall the definition of the Lp(P) norm, Section 2.6.4, hence the above
is equivalent to

E [|Xn −X|p] → 0.

Other notions of convergence are termed sure convergence or pointwise
convergence, such as convergence in mean. But the above types of conver-
gence are elementary.

3.2.1 Properties of Convergence of RVs∗∗

We will merely state some properties (without proofs that are hyper-linked
for the curious student as they are advanced for this course) and relations
between the three notions of convergence with some examples to better ap-
preciate the subtleties among them. Just remember that subtle implication
relations exist between the notions.

Theorem 3.24. Let (Ω,F ,P) be a probability triple and let X1, X2, . . . , be

a sequence of RVs and let X be another RV. The following are equivalent:

Let f : R → R be a function

• E [f(Xn)] → E [f(X)] for all bounded, countinuous f .

• E [f(Xn)] → E [f(X)] for all bounded, Lipschitz countinuous f .

• Xn ⇝ X.

• For any ”good enough” set A ⊂ R, P(Xn ∈ A) → P(X ∈ A).

Remark 3.25. For those interested, good enough in the above means that

P(X ∈ ∂A) = 0. This is equivalent to the convergence happening only on

the points of continuity of the distribution function, as in Definition 3.18.
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• Convergence almost surely implies convergence in probability1

Xn
a.s.→ X =⇒ Xn

P→ X .

• By the Borel-Cantelli Lemma 2, convergence in probability does not
imply almost sure convergence in the discrete case 3

• Convergence in probability implies convergence in distribution 4

Xn
P→ X =⇒ Xn ⇝ X .

• Convergence in distribution to a constant θ implies convergence in
probability to θ: 5

Xn ⇝ Point Mass(θ) =⇒ Xn
P→ Point Mass(θ) .

• Convergence in Lp for 1 ≤ q ≤ p < ∞ implies convergence in Lq.
(Follows from Theorem 2.49)

• Convergence in Lp for 1 ≤ p < ∞ implies convergence in probability.
Follows from Theorem 3.1.

• In general, convergence in distribution does not imply convergence in
probability.

3.3 Law of Large Numbers

Theorem 3.26. Let (Ω,F ,P) be a probability triple and let X1, X2, . . . ,∈
L2(P) be a sequence of i.i.d. RVs with E [Xi] = µ. Then

Xn
P→ µ.

Proof. We need to prove that for a fixed ϵ > 0 that

lim
n→∞

P(|Xn − µ| > ϵ) → 0.

1
https://en.wikipedia.org/wiki/Proofs_of_convergence_of_random_variables#Convergence_almost_surely_implies_

convergence_in_probability

2
https://en.wikipedia.org/wiki/Borel%E2%80%93Cantelli_lemma

3
https://en.wikipedia.org/wiki/Proofs_of_convergence_of_random_variables#Convergence_in_probability_does_

not_imply_almost_sure_convergence_in_the_discrete_case

4
https://en.wikipedia.org/wiki/Proofs_of_convergence_of_random_variables#Convergence_in_probability_implies_

convergence_in_distribution

5
https://en.wikipedia.org/wiki/Proofs_of_convergence_of_random_variables#Convergence_in_distribution_to_a_

constant_implies_convergence_in_probability

https://en.wikipedia.org/wiki/Proofs_of_convergence_of_random_variables#Convergence_almost_surely_implies_convergence_in_probability
https://en.wikipedia.org/wiki/Proofs_of_convergence_of_random_variables#Convergence_almost_surely_implies_convergence_in_probability
https://en.wikipedia.org/wiki/Borel%E2%80%93Cantelli_lemma
https://en.wikipedia.org/wiki/Proofs_of_convergence_of_random_variables#Convergence_in_probability_does_not_imply_almost_sure_convergence_in_the_discrete_case
https://en.wikipedia.org/wiki/Proofs_of_convergence_of_random_variables#Convergence_in_probability_does_not_imply_almost_sure_convergence_in_the_discrete_case
https://en.wikipedia.org/wiki/Proofs_of_convergence_of_random_variables#Convergence_in_probability_implies_convergence_in_distribution
https://en.wikipedia.org/wiki/Proofs_of_convergence_of_random_variables#Convergence_in_probability_implies_convergence_in_distribution
https://en.wikipedia.org/wiki/Proofs_of_convergence_of_random_variables#Convergence_in_distribution_to_a_constant_implies_convergence_in_probability
https://en.wikipedia.org/wiki/Proofs_of_convergence_of_random_variables#Convergence_in_distribution_to_a_constant_implies_convergence_in_probability
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But note that from Theorem 3.1 we have

P(|Xn − µ| > ϵ) ≤ E [|Xn − µ|2]
ϵ2

=
1

n

E [|X1 − µ|2]
ϵ2

. (3.14)

The last step used

E [|Xn − µ|2] = E [
1

n2
|
∑
i

Xi − nµ|2]

= E [
1

n2

∑
i,j

(Xi − µ)(Xj − µ)]

= E [
1

n2

∑
i

(Xi − µ)2]

=
1

n
E [|X1 − µ|2],

where in the second to last step in the above we used the independence

assumption as E [(Xi − µ)(Xj − µ)] = E [(Xi − µ)]E [(Xj − µ)] = 0 if i ̸= j.

(This is the famous ”variance of the sum is the sum of the variance” for

independent random variables).

Now (3.14) completes the proof.

Also a stronger result is true, but we will not give the proof

Theorem 3.27 (Strong law of large numbers). Let (Ω,F ,P) be a probability

triple and let X1, X2, . . . ,∈ L2(P) be a sequence of i.i.d. RVs with E [Xi] = µ.

Then

Xn
a.s.→ µ.

3.4 Central Limit Theorem

What if we scale the sum of Xi‘s by
√
n instead of n?

Theorem 3.28. Let (Ω,F ,P) be a probability triple and let X1, X2, . . . ,∈
L2(P) be a sequence of i.i.d. RVs with E [Xi] = µ and V [Xi] = σ2. Then if

we denote

Zn :=
Xn − E [Xn]√

V [Xn]

we get

Zn ⇝ Z

where Z ∼ N(0, 1).
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Rewriting this in Lp(P) space notation we get for Yn = Xn−E [Xn] that

Zn :=
Y n

∥Yn∥L2(P)

that is, we normalized Yn to have L2 norm 1, ∥Zn∥L2(P) = 1. The central
limit theorem tells us that there is a Z ∈ L2(P) that is the distributional
limit of Zn. (Warning we cannot expect stronger convergence, this is due to
non-compactness of the unit ball in L2).

Proof. We will skip the proof of the CLT, as it is not particularly useful for

us.



Chapter 4

Risk

Definition 4.1. A statistical model is an indexed family of distributions

(or densities or regression functions) F = {f(x; θ), θ ∈ Θ}.

• A parametric model is a model where the indexing parameter θ is
a vector in k-dimensional Euclidean space. That is, θ is finite dimen-
sional.

• A non-parametric model is a model where Θ is infinite dimensional.

Example 4.2. N = {N(µ, σ), µ ∈ R, σ > 0}. This is a parametric model.

Example 4.3. E = {F : F is a CDF}. This is a non-parametric model.

A statistical model is a model of the data generation, that is, it is what
we assume the truth is. As you can see above, a parametric model is more
restrictive, this usually means that drawing conclusions (estimation) from
data is ”easier” (higher precision with less data).

Let us quote Merriam-Webster:
”Main Entry: in·fer·ence

Pronunciation: ’in-f(&-)r&n(t)s, -f&rn(t)s
Function: noun
Date: 1594

1. the act or process of inferring: as

(a) the act of passing from one proposition, statement, or judgment
considered as true to another whose truth is believed to follow
from that of the former

(b) the act of passing from statistical sample data to generalizations
(as of the value of population parameters) usually with calculated
degrees of certainty.”

66
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Inference lies at the heart of statistics and learning. The question is:
what do we want to know?

Under a statistical model F , there is a hidden f∗ ∈ F that generates the
data, we would like to infer something about f∗ using observations.

Here are some examples of inference problems:

1. Density estimation, or consequences of the density, like estimating the
probability of an event.

2. Estimating the distribution function. Can be used to answer questions
about probabilities of simpler events, but can also be functionals of the
distribution.

3. Functional dependence, usually regression, or pattern recognition.

4.1 The supervised learning problem

As we will be working with machine learning and data science let us describe
the learning problem as seen from the field of computer science and let us
interpret each piece using our probabilistic terminology. We will begin with
learning a functional dependency, the model contains three elements

1. The generator of the data G

2. The supervisor S

3. The learning machine LM .

The generator G is a source of situations, we will make the simplest as-
sumptions, that G generates vectors Xi i.i.d. according to some unknown
but fixed distribution F (x). These vectors Xi are inputs to the supervisor
that outputs a value Yi, we know the supervisor has an unknown function
transforming Xi into Yi. At this point we could also consider that Yi|Xi

has some noise in it (perhaps the supervisor is measuring something about
Xi but that measurement has a random error in it). The learning machine
observes a realization of the n pairs

(X1, Y1), . . . , (Xn, Yn)

we denote this realized set as (x1, y1), . . . , (xn, yn) (the training set). In
this course we make the assumption that the supervisor generates Yi from
Xi according to an unknown conditional distribution F (y|x), that is the
conditional distribution of Yi|Xi. Recall that this includes the case of a
functional dependecy y = f(x). The learning machine thus observes pairs
(Xi, Yi) ∼ FX,Y (x, y) where fX,Y (x, y) = fY |X(y|x)fX(x) is the joint distri-
bution.
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The goal is to approximate this functional dependency in some
way using the observations!

Whenever we want to produce an approximation it often makes sense to
come up with a measure of quality. Denote z = (x, y) and consider a function
g(z) that is of a type we are interested in and define a loss functional L(z, g)
that measures the quality of g at the point z. Now consider the expected
loss, usually denoted as Risk

R(g) =

∫
L(z, g)dF (z) = E [L(Z, g)]

where Z = (X,Y ) ∼ F (x, y).

Goal of the learning machine: Define a class of functions g to
search from and minimize the risk inside this class.

We will now work through how this is formulated mathematically in
some special cases that will be general enough for us in this course. The
purpose, for now, is to get a feeling for the concepts. Later we will move on
to, how to actually minimize the risk using empirical data (Empirical Risk
Minimization) and some guarantees we can make under certain assumptions.

4.1.1 Mathematical description of the learning problem ”find

f”

Let us begin describing the learning problem for a simple case of the super-
visor is using a real valued continuous function y = f(x), for x ∈ [0, 1], i.e.
f ∈ C([0, 1],R), that is F (y|x) = 11y≥f(x)(y), i.e. a point mass centered at
f(x).

Example 4.4. Let us motivate the above setup with a typical example. In

many image analysis problems you need a way to determine the scale of

the objects in view. This is usually done using a fiducial mark, that is a

reference shape of known size. This is often a solid circle of known size.

What we need in order to determine the scale of the image is to detect the

fiducial mark and measure how many pixels it corresponds to in the image.

Since it is a circle, we only need to figure out the radius of it in the image

(in terms of the number of pixels).

• The data generator G is the process that produces the images, i.e. the

experiment. The data that is generated is X which is the image.

• The supervisor is anyone or anything that knows the answer of the

radius of the circle. That is, if you give the supervisor the image X,

the output will be the correct radius of the circle Y . Our assumption

is that Y = f(X).
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• The goal of the learning machine is to figure out how to get from the

image X to the radius Y simply by observing examples of pairs (X,Y ).

To describe the learning problem in the above setting we need to set-up
the following things

1. Statistical model: F = {F (x, y) = 11y≥f(x)(y)F (x), f ∈ C([0, 1],R)}

2. Model space: M = {gλ(x) : λ ∈ Λ}, a parametrized space of functions
in which we are searching for f , or an approximation thereof. (The
kind of functions the learning machine can represent).

3. A loss function L : [0, 1]× R → R.

In this setting the learning problem becomes the risk minimization problem
below

g∗ = argmin
g∈M

R(g)

However, since the model space is parametrized we can actually rewrite the
minimization problem to be over Λ instead, as follows

λ∗ = argmin
λ∈Λ

R(gλ).

This also allows us to write the loss function as a function of z and the
parameter λ as L(z, gλ(z)) = Q(z, λ) and our risk can be written as

R(λ) =

∫
Q(z, λ)dF (z) =

∫
Q((x, f(x)), λ)dF (x)

where the first integral is a double integral over z = (x, y) and the second
integral is a single integral over x.

As you have seen above the loss function is not specified and can be
chosen quite freely. Let us next consider the problem of regression.

4.1.2 Finding the regression function r(x) = E [Y |X]

Let us now assume that the supervisor is generating Y from F (y|x) given
the value of X. In this setup, perhaps we would like to estimate the full
conditional distribution F (y|x), but this is a hard problem. Instead one
could try to estimate some of its properties, for instance, we could try to
estimate a functional of F (y|x). The concept of regression is that we are
interested in the following functional

r(x) =

∫
ydF (y|x) = E [Y | X = x].

Here, r is called the regression function. Let us assume that Y ∈ L2(P) and
r ∈ L2(dFX), that is

E [Y 2] <∞, E [r2(X)] <∞.
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Example 4.5. Finding the regression function is an extension of the “find-

ing the function”, therefore we could use the same example with the fiducial

point, but now we could assume that the supervisor doesn’t know the exact

size of the circle. But instead is performing a measurement which has some

error connected to it.

Example 4.6. We have already seen an example of a regression problem.

Namely Section 2.7.2. Here the goal was to estimate

FX|Z(x | z)

if we change this to the notation above, the Z is the data coming from our

data-generator and the supervisor gives us X sampled from FX|Z(x | z).

In this case the statistical model is

F =

{
F (x, y) = FY |X(y | x)F (x);

r(x) =

∫
ydF (y | x),E [r(X)2] <∞,E [Y 2] <∞

}
Consider now an model space M = {gλ(x) : λ ∈ Λ, gλ ∈ L2(dFX)} of

some functions gλ parametrized by λ.
For a function gλ ∈ M we consider the following risk

R(λ) =

∫
(y − gλ(x))

2dF (x, y)

WARNING: we have not specified if r ∈ M!!

Assume there exists a λ∗ ∈ Λ such that for g∗ = gλ∗

R(g∗) = inf
g∈M

R(g)

then write the risk as

R(λ) = E [(Y − gλ(X))2] = E [(Y − gλ(X) + r(X)− r(X))2]

= E [(Y − r)2] + E [(r(X)− gλ(X))2] + 2E [(Y − r)(r − gλ)]

= I + II + III.

The assumption that Y , r(X) and gλ(X) all have finite second moment
is what allows us to do the computation above, and know that all terms
involved are finite. Let us now consider III and note that by the tower
property and the definition of r that

III = 2E [(Y − r)(r − gλ)] = 2E [E [(Y − r)(r − gλ)|X]]

= 2E [(E [Y |X]− r)(r − gλ)] = 0
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From this we now see that

argmin
λ∈Λ

R(λ) = argmin
λ∈Λ

E [(r(X)− gλ(X))2]

which means that the minimizer g∗ will be the function in M that is closest
to r in the mean square sense (or in L2 if using function space notation).

NOTE: if r ∈ M then g∗ = r a.e. with respect to dFX .

4.1.3 The pattern recognition problem (classification)

In the pattern recognition model we assume that the supervisors conditional
distribution F (y|x) is discrete, and can take k different values, y = 0, . . . , k−
1. Consider a model space M = {gλ(x) : gλ(x) ∈ {0, . . . , k − 1}}, that is,
functions gλ that takes values in {0, . . . , k − 1}. It is common to call the
functions in the pattern recognition problem, gλ a decision function or
decision rule. With this at hand, we define the 0 − 1 loss function for
z = (x, y)

L(z, u) =

{
0 if y = u

1 if y ̸= u

that is, the loss is 1 if u is the wrong value and 0 if it is correct. The pattern
recognition problem is the problem of minimizing the functional

R(λ) =

∫
L(y, gλ(x))dF (x, y) = E [L(Y, gλ(X))]

where (X,Y ) ∼ F (x, y).

Exercise 4.7. What is a reasonable statistical model for the Pattern Recog-

nition problem?

The classification problem is in modern times very often associated with
the prototypical example of classification of images of dogs and cats. In that
example, the images is X and the class is given by Y .

The risk above has a natural interpretation, given the ”decision rule” gλ,
the risk R(λ) is the probability of an incorrect classification by the rule gλ,

E [L(Y, gλ(X))] = P({Y ̸= gλ(X)}).

Bayes rule

What is the optimal decision rule? Recall that in the regression setting we
had the regression function as the minimizer, but what is it in the pattern
recognition problem? Consider the case when k = 2 and denote

r(x) = E [Y | X = x] = P(Y = 1 | X = x)
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Definition 4.8. The Bayes classification rule h∗ is

h∗(x) =

{
1 if r(x) > 1/2

0 otherwise.

Let us prove that the Bayes classification rule is the rule that optimizes
the risk in the pattern recognition problem.

Theorem 4.9. For any decision function g(x) taking values in {0, 1}, we
have

R(h∗) ≤ R(g).

Proof. Note that we can write

R(g) = E [L(Y, g(X))] = E [E [L(Y, g(X)) | X]]

we will work only with the inner part, i.e. now

E [L(Y, g(X)) | X = x] = 1− E [11{y=g(x)} | X = x]

= 1− E [11{1=g(x)}11{y=1} + 11{0=g(x)}11{y=0} | X = x]

= 1− 11{1=g(x)} E [11{y=1} | X = x]− 11{0=g(x)} E [11{y=0} | X = x]

= 1− 11{1=g(x)}r(x)− 11{0=g(x)}(1− r(x))

Now

E[L(Y, g(X)) | X = x]− E [L(Y, h∗(X)) | X = x] =

= −11{1=g(x)}r(x)− 11{0=g(x)}(1− r(x)) + 11{1=h∗(x)}r(x) + 11{0=h∗(x)}(1− r(x)))

= r(x)(11{1=h∗(x)} − 11{1=g(x)}) + (1− r(x))(11{0=h∗(x)} − 11{0=g(x)})

= r(x)(11{1=h∗(x)} − 11{1=g(x)})− (1− r(x))(11{1=h∗(x)} − 11{1=g(x)})

= (2r(x)− 1)(11{1=h∗(x)} − 11{1=g(x)}) ≥ 0.

This immediately implies the statement of the theorem.

From the above proof we see that if we are minimizing the risk inside a
class M that does not include h∗, we can write g∗ as a minimizer in M and
get

R(g∗) = R(h∗) + E [(2r(X)− 1)(I{1=h∗(X)} − I{1=g∗(X)})]

Remark 4.10. The above expression is interesting.
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• h∗(x) = 1 which means r(x) > 1/2 then the cost of misclassifying is

(2r − 1), which means that the cost is higher for higher values of r.

• h∗(x) = 0 which means that r(x) ≤ 1/2 then the cost of misclassifying

is higher for r close to 0.

• In the case r = 1/2 there is always zero cost and it does not matter if

we misclassify.

4.2 Maximum Likelihood Estimation

We will now derive the Maximum Likelihood as a special case of risk mini-
mization.

Assume that we have a parametric model E = {pα(z), α ∈ Rn}, for some
given family of densities pα. For example we can take

pα(z) =
1√
2πα2

e
− |z−α1|

2

α2 ,

where α = (α1, α2) which is the Gaussian family. Assume that our underly-
ing model is given by a hidden parameter α∗, then consider the loss function
L(z, α) = −lnpα(z) then the risk becomes

R(α) = −
∫

ln(pα(z))pα∗(z)dx

If we let Z be a random variable with law pα∗ then we can write the above
as

R(α) = E [− ln(pα(Z))]

Given a sequence of i.i.d. random variables Z1, . . . , Zn sampled from pα∗

the empirical Risk just becomes

R̂(α) = − 1

n

n∑
i=1

ln(pα(Zi)).

This is nothing but the negative log likelihood of the observations Z1, . . . , Zn

under the model pα. Thus to minimize the risk with respect to α is the same
as maximizing the log likelihood.

So, is the choice of loss L any good? can we say that the minimum is
attained at α∗?

How do we prove that? Well, we prove it using Jensens inequality
(Lemma 2.51). Consider the function ψ(u) = ln(u) (concave, Jensen is

reversed) and Φ(x) = pα(x)
pα∗ (x) , using Jensens inequality we get

R(α∗)−R(α) =

∫
ψ(Φ(x))pα∗dx ≤ ψ

(∫
Φ(x)pα∗dx

)
= ln1 = 0
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as such we have that R(α∗) ≤ R(α) and hence α∗ is the global minimum of
the risk. Is there any other α that also minimizes the risk? We have∫

ψ(Φ(x))pα∗dx = 0

this implies that ψ(Φ(x)) = 0 a.e. with respect to pα∗ , so if our family is
well behaved (identifiable) then the minimum is unique.

4.2.1 Maximum Likelihood and regression

Suppose that we have a pair (X,Y ) of random variable. Denote a proposal
joint density of (X,Y ) as fX,Y . Consider a sequence of i.i.d. samples (Xi, Yi),
i = 1, . . . , n with the same law as (X,Y ), then the negative log-likelihood
(which is just the empirical risk under loss ln, see Section 4.2) is given by

−
n∑

i=1

ln(fX,Y (Xi, Yi))

if we condition on X we get

−
n∑

i=1

ln(fX,Y (Xi, Yi)) = −
n∑

i=1

ln(fY |X(Yi | Xi)fX(Xi))

= −
n∑

i=1

ln(fY |X(Yi | Xi))−
n∑

i=1

ln(fX(Xi))

Now, consider a parametrized family of proposal joint distributions where
the marginal density fX does not depend on any parameter, only the con-
ditional distribution fY |X then if we want to minimize the negative log-
likelihood over this particular proposal family, only the first summand can
change, as such, it is enough to minimize over this. If we flip the sign we
get that we would like to maximize the conditional likelihood. This is the
main idea behind linear regression and logistic regression, both of which are
ubiquitous in the field of data science. To see how this looks like in the
context of linear regression, see [W, Chapter 13].

Example 1: Linear regression

In this case we make the assumption that fa,b,σ := fa,b,σ;Y |X is the density of
N(aX + b, σ2) where the parameters of interest are a, b, σ. We assume that
fX is some fixed proposal density, actually it will not matter (see above).

−
n∑

i=1

ln(fY |X(Yi | Xi)) = −
n∑

i=1

ln(
1

σ
e−

1
2σ2 (Yi−(aXi+b))2)− Cn
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The first term on the right can be rewritten as

n∑
i=1

ln(σ) +
1

2σ2

n∑
i=1

(Yi − (aXi + b))2

The main realization is that minimizing the likelihood gives the same pa-
rameters as minimizing the conditional likelihood which gives the same pa-
rameters as minimizing the sum of squares. I.e. linear regression in this case
is equivalent to mean square regression, as in Section 4.1.2.

Example 2: Logistic regression

Here we assume on the contrary to linear regression, that the proposal den-
sity fβ0,β1;Y |X is the density of a Bernoulli(G(β0+β1X)) where the function
G is defined as

G(x) =
1

1 + e−x
=

ex

1 + ex
,

and is called the logistic function. Here we assume that Y ∈ {0, 1}
If we call p(X) = G(β0 + β1X) then

−
n∑

i=1

ln(fY |X(Yi | Xi)) = −
n∑

i=1

ln(p(Xi)
Yi(1− p(Xi))

1−Yi)

= −
n∑

i=1

(Yiln(p(Xi)) + (1− Yi)ln(1− p(Xi)))

Now

ln(p(Xi)) = ln(1/(1 + e−(β0+β1Xi))) = −ln(1 + e−(β0+β1Xi))

ln(1− p(Xi)) = ln(1− 1/(1 + e−(β0+β1Xi))) = −ln(1 + eβ0+β1Xi).

When Yi = 0 we get

−ln(p(Xi)
Yi(1− p(Xi))

1−Yi) = −ln(1− p(Xi)) = ln(1 + eβ0+β1Xi)

and when Yi = 1 we get

−ln(p(Xi)
Yi(1− p(Xi))

1−Yi) = −ln(p(Xi)) = ln(1 + e−(β0+β1Xi)).

Thus the only thing that changes is the sign of the exponent, so if we write
Zi = 2Yi − 1 then Zi = 1 if Yi = 1 and Zi = −1 if Yi = 0 and we can write

−
n∑

i=1

ln(p(Xi)
Yi(1− p(Xi))

1−Yi) =
n∑

i=1

ln(1 + e−Zi(β0+β1Xi)).
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Now, you might wonder, why the specific form of G(x) other than the
fact that it outputs numbers between 0 and 1? To see why this formula is
used, consider the log-odds ratio given X, i.e.

ln

(
P(Y = 1 | X)

P(Y = 0 | X)

)
= ln

(
p(X)

1− p(X)

)
= ln

(
G(β0 + β1X)

1−G(β0 + β1X)

)
= ln(eβ0+β1X) = β0 + β1X

Thus for the logistic regression the log odds ratio is linear.



Chapter 5

Fundamentals of Estimation

5.1 Introduction

Now that we have been introduced to two notions of convergence for RV
sequences, we can begin to appreciate the basic limit theorems used in sta-
tistical inference. The problem of estimation is of fundamental importance
in statistical inference and learning. We will formalise the general estimation
problem here. There are two basic types of estimation. In point estimation
we are interested in estimating a particular point of interest that is supposed
to belong to a set of points. In (confidence) set estimation, we are interested
in estimating a set with a particular form that has a specified probability
of “trapping” the particular point of interest from a set of points. Here, a
point should be interpreted as an element of a collection of elements from
some space.

5.2 Point Estimation

Point estimation is any statistical methodology that provides one with a
“single best guess” of some specific quantity of interest. Traditionally, we
denote this quantity of interest as θ∗. This quantity of interest, which is
usually unknown, can be:

• an integral ϑ∗ :=
∫
A h(x) dx ∈ ΘΘ. If ϑ∗ is finite, then ΘΘ = R. The

risk is a prime example, or

• a parameter θ∗ which is an element of the parameter space ΘΘ,
denoted θ∗ ∈ ΘΘ,

• a distribution function (DF) F ∗ ∈ F := the set of all DFs

• a density function (pdf) f ∈ {“not too wiggly Sobolev functions”},
or

77
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• a regression function g∗ ∈ G, where G is a class of regression func-
tions in a regression experiment, or

• a classifier g∗ ∈ G.

Definition 5.1 (Data). Let (Ω,F ,P) be a probability triple, assume that

X = (X1, . . . , Xn) is a sequence of Rm valued random variables taking values

in the data space X:

X(ω) : Ω → X .

Note that X ⊂ (Rm)⊗n. The realisation of the RV X when an experiment is

performed is the observation or data x ∈ X. That is, when the experiment

is performed once and it yields a specific ω ∈ Ω, the data X(ω) = x ∈ X is

the corresponding realisation of the RV X.

Definition 5.2 (Statistic). Let (Ω,F ,P) be a probability triple, assume that

X : Ω → X is a random variable (sequence of Rm valued) taking values

in the data space X, then a statistic T is any Borel (see Definition 2.42)

function on the data space:

T (x) : X → T .

Remark 5.3. Thus, given a statistic T , we can associate with it a RV T (X)

that takes values in the space T. Sometimes we use Xn, Tn(X) and Tn to

emphasise that X is a sequence of n random variables, i.e. Xn ⊂ (Rm)⊗n

Definition 5.4. Let (Ω,F ,P) be a probability triple and let

E = {F (x;λ) : X → [0, 1] : λ ∈ ΛΛ, F is a DF}

be a statistical model of distribution functions. Let a parameter map be given

θ : ΛΛ → ΘΘ. Consider the sequence X = (X1, . . . , Xn)
IID∼ F (·;λ∗) ∈ E be

Rm-valued RVs. A point estimator of θ∗ := θ(λ∗) ∈ ΘΘ is a statistic, i.e.

Θ̂ : X → ΘΘ,

sometimes we denote it as Θ̂n to highlight that it depends on n values.

The bias of an estimator Θ̂n of θ∗ ∈ ΘΘ is:

bias(Θ̂n(X)) := E(Θ̂n(X))− θ∗ =

∫
Θ̂n(x) dF (x;λ

∗)− θ(λ∗) . (5.1)

Some comments are in order to connect these concepts to the risk min-
imization problems in supervised learning, as see in Chapter 4. Let us be
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given a statistical model E of distribution functions FX,Y , and let us consider
the regression example, i.e. we wish to estimate

r(x) =

∫
ydFY |X(y | x)

this means that for each fix x the parameter map is θx(FX,Y ) = r(x),
and if given X1, . . . , Xn we come up with a proposal function from M,
i.e. gn(X1, . . . , Xn) ∈ M then gn(X1, . . . , Xn;x) becomes a point estimator
of r(x). Sometimes however, in regression experiments you assume that the
model space and the statistical model are the same and parametric (finite
dimensional). In this case the parameter becomes easy to define and much
of this simplifies.

As we shall see later, we are often not so concerned with the statistical
properties of the specific estimator of the regression function but we are
interested in some functional of it. Usually we are interested in the Risk,
and in this case it is as simple as an expectation, see Example 5.6.

5.2.1 Some Properties of Point Estimators

Given that an estimator is merely a function from the data space to the
parameter space, we need a way to define what a good estimator is. Recall
that a point estimator Θ̂n, being a statistic, has a corresponding RV Θ̂n(X)
which has a probability distribution over its range ΘΘ. This distribution over
ΘΘ is called the sampling distribution of Θ̂n(X).

Definition 5.5 (Bias of a Point Estimator). We say that the estimator Θ̂n

is unbiased if

bias(Θ̂n(X)) = 0,

for every n. If

lim
n→∞

biasn(Θ̂n) = 0,

we say that the estimator is asymptotically unbiased.

Since the expectation of the sampling distribution of the point estima-
tor Θ̂n depends on the unknown λ∗, we emphasise the λ∗-dependence by
Eλ∗(Θ̂n(X)).

Example 5.6. Let (Ω,F ,P) be a probability triple and let

E = {F (x;λ) : X → [0, 1] : λ ∈ ΛΛ, F is a DF}
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Let the parameter map θ(λ) :=
∫
xdF (λ) be the expectation. Let X1, . . . , Xn

IID∼
F (·, λ∗), that is, with some unknown parameter λ∗ and hence some unknown

mean θ∗ = θ(λ∗). Consider the sample mean estimator

Θ̂n(X) := Xn =
1

n

n∑
i=1

Xi.

Then

bias(Θ̂n(X)) = Eλ∗ [Xn]− θ(λ∗) = 0,

hence the sample mean estimator is unbiased in our statistical model E with

respect to the parameter map θ.

Remark 5.7. In the above example our statistical model is parametrized by

Λ which is infinite dimensional, we would thus say that this is a nonparamet-

ric model. Another example of estimation would be that we assume that the

statistical model is that of normal distributions with mean µ and variance

σ2. In this case we could take ΛΛ to be two dimensional and the parameter

map be the identity map from R2 → R2.

Remark 5.8. The bias of an estimator is a term that we use to theoretically

study the properties of the estimator. In a real setting, θ∗ is unknown so we

could never compute the bias, but perhaps we can get bounds for it. In certain

cases we can prove that an estimator is asymptotically unbiased without

knowing θ∗.

For instance if X1, . . . , Xn as in our example above, if we furthermore

assumed in our statistical model that Xi ∈ L2(P) then the law of large num-

bers Theorem 3.26 implies the asymptotic unbiasedness.

Definition 5.9 (Standard Error of a Point Estimator). The standard de-

viation of the point estimator Θ̂n(X) of θ∗ ∈ ΘΘ is called the standard

error:

se(Θ̂n(X)) :=

√
Vλ∗(Θ̂n) :=

√∫ (
Θ̂n(x)− Eλ∗(Θ̂n)

)2
dF (x;λ∗) . (5.2)

Since the variance of the sampling distribution of the point estimator
Θ̂n depends on the fixed and possibly unknown λ∗, as emphasised by Vλ∗

in (5.2), the se(Θ̂n(X)) is also a possibly unknown quantity and may itself
be estimated from the data.
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Example 5.10 (Standard Error of our Estimator of θ∗). Consider the sam-

ple mean estimator Θ̂n := Xn of θ∗, from X1, X2, . . . , Xn
IID∼ Bernoulli(θ∗).

Observe that the statistic:

Tn((X1, X2, . . . , Xn)) := n Θ̂n((X1, X2, . . . , Xn)) =

n∑
i=1

Xi

is the Binomial(n, θ∗) RV. The standard error sen of this estimator is:

se(Θ̂n) =

√√√√Vλ∗

(
n∑

i=1

Xi

n

)
=

√√√√( n∑
i=1

1

n2
Vλ∗(Xi)

)

=

√
n

n2
Vλ∗(Xi) =

√
θ∗(1− θ∗)/n .

Another reasonable property of an estimator is that it converge to the
“true” parameter θ∗ – here “true” means the supposedly fixed and possibly
unknown θ∗, as we gather more and more IID data from a θ∗-specified DF
F (x; θ∗). This property is stated precisely next.

Definition 5.11 (Asymptotic Consistency of a Point Estimator). A point

estimator Θ̂n of θ∗ ∈ ΘΘ is said to be asymptotically consistent if:

Θ̂n
P−→ θ∗.

Definition 5.12 (Mean Squared Error (MSE) of a Point Estimator). Often,

the quality of a point estimator Θ̂n of θ∗ ∈ ΘΘ is assessed by the mean

squared error or MSE defined by:

MSEn(Θ̂n(X)) := Eλ∗

(
(Θ̂n(X)− θ∗)2

)
.

The following proposition shows a simple relationship between the mean
square error, bias and variance of an estimator Θ̂n of θ∗.

Proposition 5.13 (The
√
MSEn : sen : biasn–Sided Right Triangle of an

Estimator). Let Θ̂n be an estimator of θ∗ ∈ ΘΘ. Then:

MSEn(Θ̂n) = (sen(Θ̂n))
2 + (biasn(Θ̂n))

2 . (5.3)

Proof. Consider the mean squared error

Eλ∗

[
(Θ̂n(X)− θ∗)2

]
=Eλ∗

[
(Θ̂n(X)− θ∗ − E [Θ̂n(X)] + E [Θ̂n(X)])2

]
=Eλ∗

[
(Θ̂n(X)− E [Θ̂n(X)]])2

]
+ Eλ∗

[
(θ∗ − E [Θ̂n(X)])2

]
+ 2Eλ∗

[
(Θ̂n(X)− E [Θ̂n(X))(E [Θ̂n(X)]− θ∗)]

]
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the first expectation on the RHS is just the standard error, the second is

the bias and the last expectation is 0 because

Eλ∗

[
(Θ̂n(X)− E [Θ̂n(X))(E [Θ̂n(X)]− θ∗)]

]
= bias(Θ̂n(X))E [Θ̂n(X)− E [Θ̂n(X))] = 0.

Proposition 5.14 (Asymptotic consistency of a point estimator). Let Θ̂n

be an estimator of θ∗ ∈ ΘΘ. Then, if biasn(Θ̂n) → 0 and sen(Θ̂n) → 0 as

n→ ∞, the estimator Θ̂n is asymptotically consistent:

Θ̂n
P−→ θ∗ .

Proof. If bias(Θ̂n) → 0 and se(Θ̂n) → 0, then by (5.3), MSE(Θ̂n) → 0, i.e.

Eλ∗

[
(Θ̂n − θ∗)2

]
→ 0.

That is, Θ̂n(X) → θ∗ in L2(P) which implies convergence in probablity, see

Section 3.2.1.

We want our estimator to be unbiased with small standard errors as the
sample size n gets large.

Example 5.15 (Asymptotic consistency of our Estimator of θ∗). Consider

the sample mean estimator Θ̂n(X) := Xn of θ∗, from X1, X2, . . . , Xn
IID∼

Bernoulli(θ∗). Since biasn(Θ̂n) = 0 for any n and sen =
√
θ∗(1− θ∗)/n→ 0,

as n → ∞, by Proposition 5.14, Θ̂n
P−→ θ∗. That is Θ̂n is an asymptoti-

cally consistent estimator of θ∗.

We saw in Section 3.1 that the concentration inequalities gives us quite
some control, let us see an application to the mean square error of the sample
mean estimator.

Lemma 5.16. Let Y be a RV satisfying the estimate for fixed c0 ≥ 1 and

for all ϵ > 0

P(|Y | ≥ ϵ) < 2e−c0ϵ2 . (5.4)

Then

E [|Y |2] ≤ 5

c0

Before we proceed with the proof let us take an example
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Example 5.17. Let us revisit the problem of estimating the mean of an L2

RV. Let X1, . . . , Xn be i.i.d. RVs in L2(P) that are also sub-Gaussian with

parameter σ, then using Theorem 3.6 and Lemma 5.16 we get

MSE(Xn) = E [|Xn − E [Xn]|2] ≤
10σ2

n

So for sub-Gaussian RVs we have almost the same standard error as if

the random variables where Gaussian. Optimizing the proof of Lemma 5.16

we can eek out a smaller constant.

Proof. Let δ > 0, we will choose it later

E [|Y |2] ≤ E [

∞∑
k=2

δ2k211δ(k−1)≤Y <δk] + E [Y 211Y≤δ] = I + II

We first estimate II by noting that

E [Y 211Y≤δ] ≤ δ2

To estimate I note that according to (5.4) we get

I = E

[ ∞∑
k=2

δ2k211δ(k−1)≤Y <δk

]
≤ E [

∞∑
k=2

δ2k211δ(k−1)≤Y ]

≤ 2
∞∑
k=2

δ2k2e−c0δ2(k−1)2

Now choose δ2 = 1/c0, from this we get

∞∑
k=2

δ2k2e−c0δ2(k−1)2 ≤ 1

c0

∞∑
k=2

k2e−(k−1)2 ≤ 2

c0
.

Putting it all together we get

E [|Y |2] ≤ 1

c0
+

4

c0
≤ 5

c0
.

Exercise 5.18. If you use the equality

E [X] =

∫ ∞

0
P(X > t)dt

(valid for non-negative RV’s) can you improve upon the constant in Lemma 5.16?

Exercise 5.19. Advanced!! What happens in Lemma 5.16 if we replace

sub-Gaussian with sub-exponential?
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5.3 Non-parametric DF Estimation

So far, we have been interested in some estimation problems where the pa-
rameter map has a finite dimensional range. For instance, in the mean
estimation problem of R valued RVs, the space ΘΘ is of dimension 1. Simi-
larly, if we are estimating the mean and variance the space ΘΘ is of dimension
2.

Next we consider a non-parametric experiment in which n IID samples
are drawn according to some fixed and possibly unknown DF F ∗ from the
space of All Distribution Functions: That is, our statistical model is

E := {All DFs} := {F (x;F ) : F is a DF }

and we assume that there is an F ∗ ∈ E , which is the DF for an i.i.d. se-
quence X1, . . . , Xn. Here the parameter space is E itself, which is infinite
dimensional and the parameter map θ is the identity map, so ΘΘ = M.

Consider now a Model space which is

M0 := {F (x) =
∫ x

−∞
p(x; p)dx, p is a PDF}

that is the space of all DFs from all continuous random variables. Let
F ∗ ∈ M0 be a DF, let X = (X1, . . . , Xn) be i.i.d. from DF F ∗, and for
simplicity of presentation assume that X is continuous and f∗ = (F ∗)′. For
any distribution function G ∈ M0 with density g, we define the relative
entropy loss functional as

L(x,G) = ln

(
f∗(x)

g(x)

)
and the relative entropy risk becomes

R(G) =

∫
ln

(
f∗(x)

g(x)

)
f∗(x)dx.

The relative entropy risk is just the relative entropy between F and G, it
can also be identified with the Kullbach-Leibler divergence between F and
G. We would like to minimize R(G) over all distribution functions G, we
know from Section 4.2 that F is the minimizer. However we only have access
to the empirical risk, namely

R̂n(p;X) =
1

n

∑
i

ln

(
f∗(Xi)

g(Xi)

)
Exercise 5.20. Show that the relative entropy risk is the same risk as we

saw in Section 4.2, it only differs by a constant.
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If the law of large numbers is applicable we know that

lim
n→∞

1

n

∑
i

ln

(
f∗(Xi)

g(Xi)

)
= R(G).

The infimum of the empirical risk over M0 is given by a CDF Fn ̸∈ M0 of a
discrete RV for which PMF that puts weight 1/n on each Xi, i.e. the PMF

pn(x;X) =
1

n

∑
i

11x=Xi .

Exercise 5.21. Prove that the minimizer is necessarily a discrete measure.

Exercise 5.22. Prove that among all the discrete distributions with support

on the Xi the uniform one is minimizing the risk.

We know that in good cases the LLN implies that the empirical
risk for a fixed DF converges to the risk.

Question: What happens to the minimum of the empirical risk,
does it converge to the minimum of the risk as n→ ∞?

Definition 5.23. Let X = (X1, . . . , Xn) be an i.i.d. sequence of RVs with

DF F . We denote

F̂n(x;X) =
1

n

n∑
i=1

11Xi≤x

we call F̂n(x;X) the empirical distribution function. Often we will supress

the X, and just write F̂n(x), but we must never forget X.

For each fixed x ∈ R, F̂n(x;X) is a statistic and is thus a RV. We can
say that F̂n(x;X) : R×X → [0, 1] is a random function. It has the following
properties:

Lemma 5.24. Let X = (X1, . . . , Xn) be an i.i.d. sequence of RVs with DF

F . Let F̂n(x;X) be the empirical distribution function, then

1.

E [F̂n(x;X)] = F (x)

2.

V [F̂n(x;X)] =
F (x)(1− F (x))

n
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Proof. To compute the expectation, note that

E [F̂n(x;X)] = E [
1

n

n∑
i=1

11Xi≤x] = F (x).

To compute the variance we simply compute

E [F̂n(x;X)2] = E [
1

n2

n∑
i,j=1

11Xi≤x11Xj≤x]

=
1

n2

∑
i ̸=j

F (x)2 +
1

n2

∑
i=j

F (x) = F (x)2 − n

n2
F (x)2 +

n

n2
F (x)

So,

V [F̂n(x;X)2] =
1

n
F (x)(1− F (x)).

Remark 5.25. We see from the above that the empirical distribution func-

tion is unbiased and asymptotically consistent. Note: We dont even need

to know anything about the integrability of X as the empirical distribution

function is always a bounded RV, i.e. takes values between [0, 1].

If we use Hoeffdings inequality we get the following concentration:

Lemma 5.26. Let X1, X2, . . . , Xn
IID∼ F . Then, for any ϵ > 0 and x;

P(|F̂n(x;X)− F (x)| > ϵ) ≤ 2e−2nϵ2

This is perhaps weaker than we would like, actually we can prove that the
same estimate holds but over all x at the same time. The next proposition is
often referred to as the fundamental theorem of statistics and is at the
heart of non-parametric inference, empirical processes, and computationally
intensive bootstrap techniques.

Theorem 5.27 (The Dvoretzky-Kiefer-Wolfowitz (DKW) Inequality). Let

X1, X2, . . . , Xn
IID∼ F . Then, for any ϵ > 0:

P

(
sup
x

|F̂n(x)− F (x)| > ϵ

)
≤ 2e−2nϵ2 . (5.5)

You have now seen the first example of the empirical risk minimization
framework. This lies at the heart of machine learning, we will see this later
in the pattern recognition problem, where, for certain not overly complex
model spaces M0 we can guarantee estimates like the DKW above. This is
coined the uniform convergence of empirical means (ECEMP).
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5.4 Plug-in Estimators of Statistical Functionals:

Direct estimation

A statistical functional is simply any function of the DF F . For ex-
ample, the median T (F ) = F [−1](1/2) is a statistical functional. Thus,
T (F ) : {All DFs } → T, being a map or function from the space of DFs
to its range T, is a functional. The idea behind the plug-in estimator for a
statistical functional is simple: just plug-in the point estimate F̂n instead of
the unknown DF F ∗ to estimate the statistical functional of interest.

Definition 5.28 (Plug-in estimator). Suppose, X1, . . . , Xn
IID∼ F ∗. The

plug-in estimator of a statistical functional of interest, namely, T (F ∗), is

defined by:

T̂n := T̂n(X1, . . . , Xn) = T (F̂n) .

Definition 5.29 (Linear functional). If T (F ) =
∫
r(x)dF (x) for some func-

tion r(x) : X → R, then T is called a linear functional. Thus, T is linear

in its arguments:

T (aF + a′F ′) = aT (F ) + a′T (F ′) .

Proposition 5.30 (Plug-in Estimator of a linear functional). The plug-in

estimator for a linear functional T =
∫
r(x)dF (x) is:

T (F̂n) =

∫
r(x)dF̂n(x) =

1

n

n∑
i=1

r(Xi) .

Furthermore, if r(X) ∈ L2(P) then the estimator T (F̂n) is unbiased and

asymptotically consistent.

Proof. That T (F̂n) is asymptotically consistent follows from Theorem 3.26.

Remark 5.31. This means that any plug in estimator of a linear func-

tional is actually the sum of independent RVs. If r(X) is nice enough, say

sub-Gaussian or sub-exponential, then we can utilize the concentration in-

equalities in Section 3.1.

Remark 5.32. However, there are non-linear functionals that one is often

interested in. For instance the median T (F ) = F−1(12).

Definition 5.33. The influence function is defined as

LF (y) = lim
ϵ→0

T ((1− ϵ)F + ϵ11x≥y)− T (F )

ϵ
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If T is ”nice enough” we can basically use the above definition of deriva-
tive to cook up a first order approximation which would look like

T (F̂n)− T (F ) ≈
∫
LF (y)dF̂n =

1

n

∑
LF (Xi).

The point here being that the linear term is of leading order for large n, i.e.
the quadratic term is quadratic in 1/n.

If LF (Xi) ∈ L2(P) then according to the central limit theorem Theo-
rem 3.28 we have that 1√

n

∑
LF (Xi) is asymptotically normal. Keep this in

mind when we later go in to the bootstrap.

Lemma 5.34. Let F be a DF and a ∈ (0, 1) a quantile, then if F is differ-

entiable at m = F [−1](x) with positive derivative (actually F is invertible at

this point). Then the influence function for the quantile a is

LF (y) =
a− 11m≥y

dF
dx (m)

where m = F [−1](a). We thus see that LF is bounded if the density at the

median is non-zero, and as such LF (X) is sub-Gaussian and we get good

concentration for the first order term.

Remark 5.35. Note that even though LF is bounded, we cannot know this

bound as it depends on the density at the quantile. It is fairly easy to con-

struct a density which is zero at the quantile a. Think of the median in

a symmetric bimodal distribution for which the density is 0 at the middle

between the two modes.

This is actually more problematic than it seems! If we define the median

as

F [−1](1/2)

then in some cases this is a set and F is not invertible at 1/2. Thus de-

manding consistency does not really make much sense. For this, there is a

notion of weak consistency

Proof. Let y be given and consider

q = T ((1− ϵ)F + ϵ11x≥y)

Let m = F [−1](a) then if y > m we get

(1− ϵ)F (q) = a

q = F [−1](
a

1− t
).
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In the case that y ≤ m we get

(1− ϵ)F (q) + ϵ = a

q = F [−1](
a− t

1− t
)

We now know that

dq

dt

∣∣∣∣
t=0

=
a− 11m≥y

dF
dx (m)

Let us dig deeper into the quantiles, let us define the quantile function

F−1(p) = inf{x : F (x) ≥ p}

then F−1 is a left-continuous function with range equal to the support of F
and is hence unbounded. Note the subtle difference between the set-valued
formal inverse F [−1] and the quantile function F−1. Let us record some
interesting properties of F−1.

Lemma 5.36. For every 0 < p < 1 and x ∈ R,

1. F−1(p) ≤ x if and only if p ≤ F (x)

2. F (F−1(p)) ≥ p with equality iff p is in the range of F .

3. F−1(F (x)) ≤ x, where equality fails iff x is in the interior or at the

right end of a flat piece of F .

4. F−1(F (F−1)) = F−1, and F (F−1(F )) = F .

Exercise 5.37. Prove this lemma!

Recall that a uniform distribution function on the interval [0, 1] is given
by Funif (x) = min(max(x, 0), 1). Let U ∼ Funif then (1) above implies that

P(F−1(U) ≤ x) = P(U ≤ F (x)) = min(max(F (x), 0), 1) = F (x)

in other words F−1(U) ∼ F . Let us collect that as a theorem

Theorem 5.38 (Inversion sampling). If U ∼ Uniform([0, 1]) and F is a

DF, then F−1(U) ∼ F .

Some specific examples of statistical functionals we have already seen
include:
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1. The mean of RV X ∼ F is a function of the DF F :

T (F ) = E(X) =

∫
x dF (x) .

2. The variance of RV X ∼ F is a function of the DF F :

T (F ) = E(X − E(X))2 =

∫
(x− E(X))2 dF (x) .

3. The value of DF at a given x ∈ R of RV X ∼ F is also a function
of DF F :

T (F ) = F (x) .

4. The qth quantile of RV X ∼ F :

T (F ) = F [−1](q) where q ∈ [0, 1] .

5. The first quartile or the 0.25th quantile of the RV X ∼ F :

T (F ) = F [−1](0.25) .

6. The median or the second quartile or the 0.50th quantile of the
RV X ∼ F :

T (F ) = F [−1](0.50) .

7. The third quartile or the 0.75th quantile of the RV X ∼ F :

T (F ) = F [−1](0.75) .



Chapter 6

Random Variable Generation

Definition 6.1 (Informal). A uniform pseudorandom number gen-

erator (UPRNG) is an algorithm which starting from an initial value u0
and a transformation D, produces a sequence ui = D(ui−1) in [0, 1] for

i = 1, . . .. For all n, u1, . . . , un approximate the behavior of an i.i.d. se-

quence of Uniform([0, 1]) random numbers.

We could provide a mathematical definition of a UPRNG.

Definition 6.2 (Formal). Let u0 ∈ [0, 1] and let D : [0, 1] → [0, 1], define

the dynamical system

ui = D(ui−1), i = 1, 2, . . .

For a set A ⊂ [0, 1], define Nn(A) as the number of ui ∈ A for i =

0, 1, 2, . . . , n − 1. We call D a UPRNG if and only if for every u0 ∈ [0, 1]

and every Borel set A ⊂ [0, 1]

Nn(A)

n
→
∫
A
dx.

In words, no matter the starting point u0 the long term relative frequency
of the event ui ∈ A approaches the probability of that event for a uniform
random RV as n→ ∞.

But before we get to the UPRNG let us define a pseudorandom sequence

Definition 6.3 (pseudorandom). Consider the finite set M = {0, 1, . . . ,M−
1} and consider the sequence u0, u1, . . . ∈ M. For every a ∈ M, define

Nn(a) as the number of ui = a for i = 0, 1, 2, . . . , n − 1. We call the se-

quence u0, u1, . . . pseudorandom on M if and only if for every a ∈ M

Nn(a)

n
→ 1

M
.

91
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6.1 Congruential Generators

Definition 6.4. Let u0 be fixed and let D be a map, define the dynamical

system

ui = D(ui−1), i = 1, . . .

We call T0 the period of D started at u0 the smallest positive integer such

that

ui+T0 = ui, for some i.

The smallest period T for all admissible starting points u0 is called the period

for D.

Exercise 6.5. If we start at a fixed point u0, and let T0 be the period of D

w.r.t u0, then if

ui+T0 = ui

holds for some i, then it holds for all i.

Definition 6.6. A congruential generator with parameters (a, b,M) on

{0, 1, . . . ,M − 1} is defined by the function

D(x) = (ax+ b) mod M.

Example 6.7. The congruential generator (3, 0, 16) on {0, 1, . . . , 16}, has
many different periods. For instance if u0 = 0 then the period for 0 is 1. If

we instead start at 1 then the period is 4. If we start at 2 the period is 2.

etc.

Is it possible for a congruential generator to generate something pseudo-
random?

Lemma 6.8. Consider a congruential generator D on M = {0, 1, . . . ,M −
1} with period M , then for any starting point u0 ∈ M, the sequence ui =

D(ui−1) is pseudorandom on M.

Exercise 6.9. Prove the above lemma.

The problem with a congruential generator on M is that the period is as
long as the number of unique values, this will be problematic if M is small.
What we can do is to use the congruential generator for a larger set and
restrict it to a smaller to get a better generator.
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Lemma 6.10. Consider a congruential generator D on M = {0, 1, . . . ,M−
1} with period M , then for any starting point u0 ∈ M, define ui = D(ui−1)

then the sequence vi = ui mod K for 1 ≤ K ≤ M is pseudorandom on

{0, 1, . . . ,K − 1} if M is a multiple of K.

Exercise 6.11. Prove the above lemma.

One issue with the method in the above lemma, is that the period is
K for vi. Thus we have essentially thrown away the good thing about our
congruential generator, i.e. the long period. This can be fixed by instead of
taking the modulus we divide:

Lemma 6.12. Consider a congruential generator D on M = {0, 1, . . . ,M−
1} with period M , then for any starting point u0 ∈ M, define ui = D(ui−1)

then the sequence vi = ⌊(ui/M) ∗K⌋ for 1 ≤ K ≤ M is pseudorandom on

K = {0, 1, . . . ,K − 1} if M is a multiple of K, moreover the period of vi is

M .

Proof. Consider the sequence vi as defined above, and lets calculate

Nn(a) = #{vi = a, i = 1 . . . , n}
= #{⌈Ma/K⌉ ≤ ui ≤ ⌊Ma/K +M/K⌋, i = 1, . . . , n}

We know that ui ∈ M, thus for every a ∈ K, we just need to count how

many numbers of M will produce a single number in K, and this should be

independent of a, i.e. if the following does not depend on a

⌊Ma/K +M/K⌋ − ⌈Ma/K⌉.

If nowM is divisible by K thenMa/K is an integer andM/K is an integer,

thus

⌊Ma/K +M/K⌋ − ⌈Ma/K⌉ =Ma/K +M/K −Ma/K =M/K,

which proves our first claim. The second claim follows from realizing that

vi+T0 = vi ⇔ ⌊(ui+T0/M) ∗K⌋ = ⌊(ui/M) ∗K⌋
⇔ ui+T0/M ∗K = ui/M ∗K
⇔ ui+T0 = ui.

That is, the period of vi is the same as the period of ui which is M .

The following number theoretical theorem tells us exactly when we can
expect period M .
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Theorem 6.13 (Hull–Dobell Theorem). The congruential generator (a, b,M)

has period M iff

• gcd(b,M) = 1,

• p divides a− 1 for every prime p that divides M

• 4 divides a− 1 if 4 divides M .

See [HD, K].
Let us check the moments of the pseudorandom numbers generated

Lemma 6.14. Let u0, u1, . . . be a psuedo random sequence over M = {0, 1, . . . ,M−
1}. Then the empirical mean and variance has limits as follows

lim
n→∞

1

n

n∑
i=1

ui =
M − 1

2

and

lim
n→∞

1

n

n∑
i=1

u2i −

(
1

n

n∑
i=1

ui

)2

=
M2 − 1

12
.

Proof. From Definition 6.3

lim
n→∞

1

n

n∑
i=1

ui = lim
n→∞

M−1∑
i=0

i
Nn(i)

n
=

M−1∑
i=0

i

M
=
M − 1

2

The empirical variance follows similarly.

The conclusion is that the long term empirical moments converge to the
discrete uniform over M.

We saw earlier that rescaling the result by dividing (see Lemma 6.12)
gives us a generator over a smaller set. Our initial problem of generating
number from the uniform distribution can be partially solved by a generator
of large period.

Corollary 6.15. Let u0, u1, . . . be a psuedo random sequence over M =

{0, 1, . . . ,M − 1}. Then vi = ui/M has the empirical mean and variance

limits as follows

lim
n→∞

1

n

n∑
i=1

vi =
1

2
− 1

2M

and

lim
n→∞

1

n

n∑
i=1

v2i −

(
1

n

n∑
i=1

vi

)2

=
1

12
− 1

12M2
.
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From the above we see that if we have a generator with a large periodM ,
which could be over 64-bit integers, i.e. we could have period 264, then the
resulting ui/M will have mean 1

2 −2−65 and variance 1
12 −

1
32

−130. Will such
a generator be an UPRNG? Actually no, but we can achieve the following

Lemma 6.16. Let v0, v1, . . . be a pseudorandom sequence in M = {0, 1, . . . ,M−
1}, define ui = vi/M . For any interval A = (a, b) ⊂ [0, 1], define Nn(A) as

the number of ui ∈ A for i = 0, 1, 2, . . . , n− 1. We have∣∣∣∣ limn→∞

Nn(A)

n
−
∫
A
dx

∣∣∣∣ ≤ 1

M
.

For reasons a little bit beyond this course, it turns out that we cannot
represent a UPRNG on a finite machine, we can however generate almost
an UPRNG as seen in the lemma above.

Now all of what we have done so-far is to check whether the sequence has
the right limiting distribution and the right moments. But, this doesn’t tell
us anything about the randomness, for instance the sequence 0, 1, 0, 1, 0, 1, . . .
is a pseudorandom sequence over {0, 1}, it is however very structrured and
thus not random. There is a series of tests one usually does to verify if a
pseudorandom sequence is good, we will see this a bit more in the computer
exercises.

6.2 Sampling

The previous section was just to give you a flavor of what random in a
computer represents, namely it is not random but a deterministic sequence
that ”looks” random. We will leave the pseudorandom part for now and
instead attack the problem of sampling from a generic distribution given a
random sample from Uniform([0, 1]).

Recall from Theorem 5.38 that given a distribution function F
and X ∼ Uniform([0, 1]), then F−1(X) ∼ F .

However, sometimes finding the quantile function F−1 can be analyti-
cally impossible or if done numerically, very expensive. There are other ways
to sample that are more costly than inversion sampling (given the inverse)
but sometimes cheaper than computing the inverse.

As you can see in Algorithm 1, the updated variable is a conditional
random variable on the event U ≤ r(X), the distribution of this conditional
random variable is the distribution we are after, namely F . This is contained
in the lemma below:

Lemma 6.17. Let X ∼ G and let U ∼ Uniform([0, 1]), then if we define

the RV I = 11U≤r(X), the random variable Y = X | (I = 1) satisfies Y ∼ F .
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Algorithm 1 Accept-Reject Sampler

1: input:

(1) a target density f(x),

(2) a sampling density g(x) that satisfies f(x) ≤Mg(x).

2: output: a sequence of samples x0, . . . with distribution f

3: Sample initial state X(0) from g.

4: repeat

5: At iteration t,

6: Generate x from g and compute the ratio r(x) = f(x)
Mg(x)

7: Draw U ∼ Uniform([0, 1]) and set Xt+1 = x, if U ≤ r(x), otherwise

goto 6?

8: until desired number of samples are obtained.

Proof. By the properties of conditional densities we have the equality (Bayes)

fX|I(x | I = 1) =
fI|X(I = 1 | X = x)fX(x)

fI(1)
.

Let us compute the constituents of the RHS of the above. Now since I is

discrete we know that

fI|X(I = 1 | X = x) = P(I = 1 | X = x) = P(U ≤ r(x)) = r(x)

and from the law of total probability (Theorem 1.16)

fI(1) = P(I = 1) =

∫
P(I = 1 | X = x)g(x)dx =

1

M

∫
p(x)dx =

1

M
.

Finally we achieve

fX|I(x | I = 1) =
r(x)g(x)

1/M
=
f(x)g(x)M

Mg(x)
= f(x)

In some cases there is not really simple density g to the density f that
you wish to sample from, so the accept-reject does not work. An example of
this is the Normal distribution, which basically requires us to have a density
g which is Gaussian like if we want the algorithm to not reject way too much.
So how do we do it? We have a few options

1. Since the distribution function for the Gaussian does not have a closed
form, the inverse is hard to compute and requires a lot of computation.
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There does however exist approximations of the inverse that we can
use.

Φ−1(α) ≈ t− a0 + a1t

1 + b1t+ b2t
.

You will find the constants in the notebooks.

2. Use a transformation method, i.e. find some kind of function h(x) and
a simpler distribution F such that h(X) is Gaussian or close to it.

Theorem 6.18 (Box-Muller). Suppose that U1, U2
IID∼ Uniform([0, 1]), then

Z0 =
√
−2ln(U1) cos(2πU2)

Z1 =
√
−2ln(U1) sin(2πU2)

are independent random variables, and Z0, Z1 ∼ Normal(0, 1).

Proof. Consider bivariate normal RV. Z, then the distribution of Y = |Z|2

is χ2 distributed with 2 degrees of freedom. Furthermore W = Z/|Z|, is
uniformly distributed on the unit circle. We know that Y,W are independent

(see Exercise 6.19). Thus to generate a bivariate normal it is enough to

generate from a χ2 distribution with 2 degrees of freedom and a point from

the uniform distribution on the circle. The χ2 with 2 degrees of freedom

is just the exponential distribution with parameter 1/2, as such we can

generate it using the inversion sampling method (Theorem 5.38). The rest

of the proof is left as an exercise.

Exercise 6.19. First show that W,Y in the proof above are independent.

Then show that W generated using (cos(2πU2), sin(2πU2)) is uniform on

the unit circle. Finally to show that Z0, Z1 are independent, since they are

Gaussian it suffices to show that their covariance is zero.

6.3 Practice exercises

Exercise 6.20.

• Implement your own congruential generator (a, b,M).

• Use the congruential generator to generate pseudo random numbers

from Uniform([0, 1]). Test out a combination (a, b,M) that seems to

work well when tested with for instance, Kolmogorov Smirnoff. This is

easy to do, let F̂n denote the empirical distribution function according
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to the n samples drawn, compare this to the distribution function for

the uniform distribution F and consider

sup
x∈[0,1]

|F̂n(x)− F (x)|.

Derive a statistical test based on Theorem 5.27 and test whether your

sampler passes.

Exercise 6.21.

• Now that you can sample from the uniform distribution, generate sam-

ples from N(10, 5) using the Box-Muller method, Theorem 6.18.

• Repeat the testing from Exercise 6.20 but now compare to F being the

normal distribution.

• What did you actually assume for the test above? Is it accurate? Does

it satisfy the conditions of Theorem 5.27?

Exercise 6.22. Consider the continuous distribution with density

p(x) =
1

2
cos(x), −π

2
< x <

π

2
.

• Plot the distribution function F (x).

• Find the inverse distribution function F−1.

• Implement an inversion sampler to sample from F .

• Implement an Accept-Reject Sampler, Algorithm 1 with sampling den-

sity Uniform([ − π/2, π/2]). On average, how many samples get re-

jected?



Chapter 7

Finite Markov Chains

Markov chains that we will be studying in this chapter is a stochastic process,
which we have yet to define:

Definition 7.1. Let (Ω,F ,P) be a probability triple. A R-valued stochastic

process is a parametrized set of RVs. That is, we denote the collection

(Xα)α∈A

for a parameter set A, a R-valued stochastic process.

If the index set A = N we call it a discrete (or discrete-time) stochatic

process.

That is, previously we have used the concept of an i.i.d. sequence of ran-

dom variables, that is, X1, X2, . . .
IID∼ F . This sequence is a simple case of a

discrete stochastic process. To study this sequence as a process is quite un-
interesting as all Xi are independent, we will in this chapter introduce some
dependency an analyze the resulting structure. These discrete stochastic
processes are termed finite Markov chains. We will cover their properties
and simulation methods.

7.1 Introduction

A finite Markov chain is a stochastic process that moves among elements
in a finite set X as follows: when at x ∈ X the next position is chosen at
random according to a fixed probability distribution P (·|x). We define such
a process more formally below.
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7.1.1 Advanced intro*

Let (Ω,F ,P) be a probability triple and let G be a sigma algebra on Ω.
Define for a R valued R.V. X the conditional expectation

E [X | G]

which is any G measurable function (is it unique?) Ω → R which satisfies
for any G ∈ G ∫

G
E [X | G]dP =

∫
G
XdP

This can be thought of the best possible guess of X given the knowledge
contained in G. The conditional probability can be defined as

P(X ∈ A | G) := E [11A(X) | G]

which constitutes the single best guess for the if the event X ∈ A happened
given the information contained in G.

Remark 7.2. If we think of a random variable X ∈ L2(P), then for any

σ-algebra G we see that

E [(X − E [X | G])11G] = 0

for all G ∈ G, which says that the L2(P) random variable X − E [X | G] is
orthogonal to all indicators 11G, G ∈ G. In this case the conditional expecation

is unique and can be thought of as a projection of X onto G.

Remark 7.3. Properties:

• E [E [X | G]] = E [X], so the tower property still holds.

• If X is G measurable (i.e. we know X), then E [X | G] = X, i.e.

we are allowed to guess X itself since we know it. There is no better

guess.

• If X is independent of G, i.e. the information in G is irrelevant for

X, then E [X | G] = E [X], i.e. we gained nothing.

Consider now a stochastic process X1, . . . , Xn with index set N. Define
Fn as the smallest σ-algebra on Ω such (X1, . . . , Xn) is an Rn valued RV.

We can evaluate this on a particular realization of (X1, . . . , Xn) as follows

P(Xt ∈ A | Fn) = P(Xt ∈ A | x1, . . . , xn)((X1, . . . , Xn)).

From the above it is clear that P(Xt ∈ A | Fn) is a random variable that
depends on (X1, . . . , Xn). Note that F0 ⊂ F1 ⊂ · is an increasing family
of σ-algebras, all of which are subsets of F , such a sequence is denoted a
filtration.
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Remark 7.4. This can be seen as over-complicating it. Why do we even

need this level of formalism? Since the statespace X is finite we could equally

well say

P(A | X1 = x,X2 = x2, . . . , Xn = xn)

which we already know what it means. The reason is

1. It simplifies notation.

2. If you take a course in continuous stochastic processes then you would

have to use this notation.

3. If the statespace is not enumerable, then you would also have to use

this formalism.

4. The object Fn has a natural interpretation as the ”history”, or specif-

ically when mapped by (X1, . . . , Xn) as the set of trajectories of the

stochastic process up to and including time n.

Definition 7.5 (Finite Markov Chain). A stochastic process,

{Xn : n ∈ N}

is a Markov chain with state space X, if for any t ∈ N the following

holds

P(Xt+1 = x|Ft) = P(Xt+1 = x|Xt).

We say that the Markov chain is homogeneous if

P(Xt+1 = x|Xt) = P(Xs+1 = x|Xs)

for all t, s ∈ N.

From the above and with the intuition that P(Xt+1 = x | Ft) constitutes
our best guess for the event Xt+1 = x being true given the history of the
process up to time t, we can interpret the Markov chain condition as saying
that the only information from the history that we need is the value at time
t.

7.1.2 Non advanced introduction

Definition 7.6 (Finite Markov Chain). A stochastic process,

{Xn : n ∈ N}
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is a Markov chain with state space X, if for any t ∈ N the following

holds

P(Xt+1 = x|X0, X1, . . . , Xt) = P(Xt+1 = x|Xt).

We say that the Markov chain is homogeneous if

P(Xt+1 = x|Xt) = P(Xs+1 = x|Xs)

for all t, s ∈ N.

Note that if the Markov chain is homogeneous then it is enough to know

P(X1 = x1|X0 = x0) : X× X → [0, 1]

i.e. we can identify it with a |X| × |X| matrix

Pxy = P(X1 = y|X0 = x).

Usually we identify x ∈ X with the enumeration of elements in X and thus
we can write for N = |X| an N ×N matrix Pij . This matrix is denoted the
transition matrix.

Lemma 7.7. Let {Xn, n ∈ N} be a homogeneous Markov chain. Let the

statespace X = {s1, . . . , sN} be enumerated and let µ0 be the PMF of X0.

Then the PMF µn for Xn is

µn = µ0P
n

Proof. Let us start with applying the law of total probability

P(Xn = xn) =
∑
xn−1

P(Xn = xn|Xn−1 = xn−1)P(Xn−1 = xn−1)

=
∑
xn−1

Pxn−1xn P(Xn−1 = xn−1)

Since n was arbitrary we can apply it again until we reach X0, namely

P(Xn = xn) =
∑

x0,...,xn−1

Pxn−1xn . . . Px0x1 P(X0 = x0)

The above is just a sequence of matrix multiplications, we can write

µn = µ0P
n.
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Since we will be interested in Markov chains on X = {s1, s2, . . . , sk}
with the same transition matrix P but different initial distributions, we
introduce Pµ and Eµ for probabilities and expectations given that the initial
distribution is µ, respectively. When the initial distribution is concentrated
at a single initial state x given by:

11{x}(y) :=

{
1 if y = x

0 if y ̸= x

we represent it by ex, the 1 × k ortho-normal basis row vector with a 1 in
the x-th entry and a 0 elsewhere. We simply write Px for P11{x} or Pex and
Ex for E11{x} or Eex . Thus, Lemma 7.7 along with our new notations means
that:

Px(Xt = y) = (exP
t)(y) = P t(x, y) .

In words, the probability of going to y from x in t steps is given by the
(x, y)-th entry of P t, the t-step transition matrix. We refer to the x-th
row and the x-th column of P by P (x, ·) and P (·, x), respectively.

Let a function f(x) : X → R be given, then we can define

(P tf)(x) :=
∑
y

P t(x, y)f(y) =
∑
y

f(y)Px(Xt = y) = Ex(f(Xt)) . (7.1)

This is the expected value of f under the distribution of states in t steps
given that we start at state x.

Identified in the above way, we see that P t : (X → R) → (X → R) i.e.
it maps a R valued function to an R valued function. Let us look at some
properties of P t

Lemma 7.8. Let f : X → R, then the mapping P t defined in (7.1) satisfies:

• Let g : X → R, then P t(f + g) = P tf + P tg, i.e. it is a linear

functional.

• Let t > s > 0 be positive integers, then P tf = P t−s(P sf).

Proof. Let us denote Xt, Yt two homogeneous and independent Markov pro-

cesses with the same transition Matrix. First, define g(x) = (P sf)(x) =
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Ex [f(Xs)], then consider

(P t−s(P sf))(x) = Ex [g(Yt−s)] =
∑
y

g(y)P(Yt−s = y | Y0 = x)

=
∑
y

∑
z

f(z)P(Xs = z | X0 = y)P(Yt−s = y | Y0 = x)

=
∑
y

∑
z

f(z)P(Xt = z | Xt−s = y)P(Xt−s = y | X0 = x)

=
∑
z

f(z)P(Xt = z | X0 = x)

= (P tf)(x)

This is the prime example of a so called Semigroup,

Definition 7.9. A semigroup is a set S together with a binary operator ⊙,

i.e. a function ⊙ : S × S → S that satisfies the associative property

(a⊙ b)⊙ c = a⊙ (b⊙ c)

for all a, b, c ∈ S.

Let S = {P t, t > 0} and define the operator ⊙ as

P t ⊙ P s = P t+s

then we see from the above lemma Lemma 7.8 that {Pt, t > 0} forms a
semigroup, specifically a one parameter semigroup.

Remark 7.10. The semigroup property is retained when moving over to

continuous time Markov processes. If the semigroup is what is called strongly

continuous there is also a time dependent (parabolic) partial differential

equation which P tf solves.

Until now our Markov chains have been homogeneous in time according
to Definition 7.5, i.e., the transition matrix P does not change with time.
We define inhomogeneous Markov chains as Markov chains that are not
homogeneous. Such Markov chains are more realistic as models in some
situations and more flexible as algorithms in the sequel.

Lemma 7.11. For a finite inhomogeneous Markov chain (Xt)t∈Z+
with state

space X = {s1, s2, . . . , sk}, initial distribution

µ0 := (µ0(s1), µ0(s2), . . . , µ0(sk)) ,
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where µ0(si) = P(X0 = si), and transition matrices

(P1, P2, . . .) , Pt := (Pt(si, sj))(si,sj)∈X×X , t ∈ {1, 2, . . .}

we have for any t ∈ Z+ that the distribution at time t given by:

µt := (µt(s1), µt(s2), . . . , µt(sk)) ,

where µt(si) = P(Xt = si), satisfies:

µt = µ0P1P2 · · ·Pt . (7.2)

Proof. Left as Exercise 7.12.

Exercise 7.12. Prove Lemma 7.11 in a similar way to Lemma 7.7.

7.2 Random Mapping Representation and Simu-

lation

In order to simulate (x0, x1, . . . , xn), a sequential realisation or sequence of
states visited by a Markov chain, we need a random mapping representation
of a Markov chain.

Definition 7.13 (Random mapping representation (RMR)). A random

mapping representation (RMR) of a transition matrix P := (P (x, y))(x,y)∈X2

is a function

ρ(x,w) : X×W → X , (7.3)

along with a W-valued random variable W , satisfying

P ({ρ (x,W ) = y}) = P (x, y), for each (x, y) ∈ X2 . (7.4)

Theorem 7.14. Every Markov chain on X has a random mapping repre-

sentation.

Proof. LetXt be a Markov chain with transition matrix Pt at t, for simplicity

assume that X ⊂ N. Let t be an arbitrary time. Let Zt ∼ Uniform([0, 1]).

For any i, j ∈ X, set

Fi,j =

j∑
m=1

Pt(i,m).

Define

ft(i, z) := j when Fi,j−1 < z ≤ Fi,j .
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We have

P(ft(i, Z) = j) = P(Fi,j−1 < Z ≤ Fi,j) = Fi,j − Fi,j−1

=

j∑
m=1

Pt(i,m)−
j−1∑
m=1

Pt(i,m) = Pt(i, j).

We see that (ft, Zt) is a RMR for Xt at t.

Exercise 7.15. Think about what Fi,j actually is and what is ft(i, z)? Hint:

Recall the concept of inversion sampling Theorem 5.38 and relate it to that.

Theorem 7.16. Let W1, . . . ,
IID∼ F such that (ρt,Wt) is a RMR for a tran-

sition matrix Pt, for all t ∈ N. Then if X0 ∼ µ0,

Xt := ρt(Xt−1,Wt), t ∈ N,

is a Markov chain with initial distribution µ0 and transition matrix Pt at

time t.

Exercise 7.17. Do the proof of Theorem 7.16 by using the necessary Defi-

nitions.

Exercise 7.18. Show that the RMR for a Markov chain is not necessarily

unique.

7.3 Irreducibility and Aperiodicity

The utility of our mathematical constructions with Markov chains depends
on a delicate balance between generality and specificity. We introduce two
specific conditions called irreducibility and aperiodicity that make Markov
chains more useful to model real-word phenomena.

Definition 7.19. Let Xt be a homogeneous Markov chain on state space

X = {s1, . . . , sN}. We say that si → sj ( communicates) if there exists a

t ∈ N such that

P(Xt = sj | X0 = si) > 0.

We say that si, sj intercommunicates if si → sj and sj → si, we write

this as si ↔ sj.

Definition 7.20 (Irreducible). A homogeneous Markov chain (Xt)t∈Z+ on

state space X := {s1, s2, . . . , sk} is said to be irreducible if si ↔ sj for each

(si, sj) ∈ X2. Otherwise the chain is said to be reducible.
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Definition 7.21 (Return times and period). Let T(x) := {t ∈ N : P t(x, x) >

0} be the set of possible return times to the starting state x. The period

of state x is defined to be gcd(T(x)), the greatest common divisor of T(x).
When the period of a state x is 1, i.e., gcd(T(x)) = 1, then x is said to be

an aperiodic state.

Proposition 7.22. If the Markov chain (Xt)t∈Z+ with transition matrix P

on state space X is irreducible then gcd(T(x)) = gcd(T(y)) for any (x, y) ∈
X2.

Proof. Fix any pair of states (x, y) ∈ X2. Since, P is irreducible, x ↔ y

and therefore there exists natural numbers η(x, y) and η(y, x) such that

P η(x,y)(x, y) > 0 and P η(y,x)(y, x) > 0. Let η′ = η(x, y) + η(y, x) and

observe that η′ ∈ T(x) ∩ T(y), T(x) ⊂ T(y) − η′ := {t − η′ : t ∈ T(y)}
and gcd(T(y)) divides all elements in T(x). Thus, gcd(T(y)) ≤ gcd(T(x)).
By a similar argument we can also conclude that gcd(T(x)) ≤ gcd(T(y)).
Therefore gcd(T(x)) = gcd(T(y)).

Definition 7.23 (Aperiodic). A Markov chain (Xt)t∈Z+ with transition ma-

trix P on state space X is said to be aperiodic if all of its states are aperiodic,

i.e., gcd(T(x)) = 1 for every x ∈ X. If a chain is not aperiodic, we call it

periodic.

7.4 Stationarity

We are interested in statements about a Markov chain that has been running
for a long time. For any nontrivial Markov chain (X0, X1, . . .) the value of
Xt will keep fluctuating in the state space X as t → ∞ and we cannot
hope for convergence to a fixed point state x∗ ∈ X or to a k-cycle of states
{x1, x2, . . . , xk} ⊂ X. However, we can look one level up into the space
of probability distributions over X that give the probability of the Markov
chain visiting each state x ∈ X at time t, and hope that the distribution of
Xt over X settles down as t → ∞. The Markov chain convergence theorem
indeed sattes that the distribution of Xt over X settles down as t → ∞,
provided the Markov chain is irreducible and aperiodic.

Definition 7.24 (Stationary distribution). Let (Xt)t∈Z+
be a Markov chain

with state space X = {s1, s2, . . . , sk} and transition matrix P = (P (x, y))(x,y)∈X2.

A row vector

π = (π(s1), π(s2), . . . , π(sk)) ∈ R1×k

is said to be a stationary distribution for the Markov chain, if it satisfies

the conditions of being:
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1. a probability distribution: π(x) ≥ 0 for each x ∈ X and
∑

x∈X π(x) =

1, and

2. a fixed point: πP = π, i.e.,
∑

x∈X π(x)P (x, y) = π(y) for each y ∈ X.

Proposition 7.25 (Existence of Stationary distribution). For any irre-

ducible and aperiodic Markov chain there exists at least one stationary dis-

tribution.

Proof. See the Perron Frobenius theorem, Wikipedia.

7.5 Reversibility

We introduce another specific property called reversibility. This property
will assist in conjuring Markov chains with a desired stationary distibution.

Definition 7.26 (Reversible). A probability distribution π on X = {s1, s2, . . . , sk}
is said to be a reversible distribution for a Markov chain (Xt)t∈Z on X
with transition matrix P if for every pair of states (x, y) ∈ X2:

π(x)P (x, y) = π(y)P (y, x) . (7.5)

A Markov chain that has a reversible distribution is said to be a reversible

Markov chain.

In words, π(x)P (x, y) = π(y)P (y, x) says that if you start the chain at
the reversible distribution π, i.e., µ0 = π, then the probability of going from
x to y is the same as that of going from y to x.

Proposition 7.27 (A reversible π is a stationary π). Let (Xt)t∈Z+
be a

Markov chain on X = {s1, s2, . . . , sk} with transition matrix P . If π is a

reversible distribution for (Xt)t∈Z+
then π is a stationary distribution for

(Xt)t∈Z+
.

Exercise 7.28. Prove Proposition 7.27.

7.5.1 Random Walks on Graphs

Random walks on graphs is one of the most useful applications of Markov
chains. In this section, we will see some basic definitions from graph theory
and define simple random walks on graphs as finite Markov chains to shed
light on the random surfer model of Google.

https://en.wikipedia.org/wiki/Perron%E2%80%93Frobenius_theorem
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Definition 7.29 (Definitions in Graph Theory). Here we take a brief tour

of the most basic defintions in graph theory. A Graph G := (V,E) con-

sists of a vertex set V := {v1, v2, . . . , vk} together with an edge set

E := {e1, e2, . . . , el}. Each edge in E connects two of the vertices in V. A

directed edge eh connecting vertex vi to vj is denoted by the ordered pair

(vi, vj). An undirected edge simply connects two vertices without regard

to order and is denoted by {vi, vj} to represent both of the directed edges

(vi, vj) and (vj , vi). Thus, E ⊂ V2 and a graph G with directed eges in E is

said to be an directed graph and a graph G with undirected edges is said

to be an undirected graph. Two vertices are neighbours if they share an

edge, i.e., if they are connected by an edge. The neighbourhood of a vertex

vi denoted by nbhd(vi) := {vj : (vi, vj) ∈ E} is the set of neighbouring ver-

tices of vi. The number of neighbours of a vertex vi in an undirected graph is

called its degree and is denoted by deg(vi). Note that deg(vi) = #nbhd(vi).

If there is a sequences of edges or a path from every vertex to every other

vertex then the undirected graph is said to be connected. In a graph we only

allow one edge per pair of vertices but in a multigraph we allow more than

one edge per pair of vertices. An edge can be weighted by being associated

with a real number called its weight. More generally, vertices and edges can

be augmented with various properties, including addresses, names, etc., and

weights, relation types, etc. Graphs whose vertices and edges are further

augmented by various properties are called property graphs, an extremely

useful and versatile representation of data from different domains. We can

represent a directed graph by its adjacency matrix given by:

A := (A(vi, vj))(vi,vj)∈V×V , A(vi, vj) =

{
1 if (vi, vj) ∈ E
0 otherwise .

Thus the adjacency matrix of an undirected graph is symmetric. In a directed

graph, each vertex vi has in-edges that come into it and out-edges that go

out of it. The number of in-edges and out-edges of vi is denoted by ideg(vi)

and odeg(vi) respectively. Note that a transition diagram of a Markov chain

is a weighted directed graph and is represented by the transition probability

matrix.

Model 7.30 (Random Walk on a Connected Undirected Graph). A random

walk on a connected undirected graph G = (V,E) is a Markov chain with

state space V := {v1, v2, . . . , vk} and the following transition rules: if the

chain is at vertex vi at time t then it moves uniformly at random to one

of the neighbours of vi at time t + 1. If deg(vi) is the degree of vi then the
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transition probabilities of this Markov chain is

P (vi, vj) =

{
1

deg(vi)
if (vi, vj) ∈ E

0 otherwise,

Proposition 7.31. The random walk on a connected undirected graph G =

(V,E), with vertex set V := {v1, v2, . . . , vk} and degree sum d =
∑k

i=1 deg(vi)

is a reversible Markov chain with the reversible distribution π given by:

π =

(
deg(v1)

d
,
deg(v2)

d
, . . . ,

deg(vk)

d

)
.

Exercise 7.32. Prove Proposition 7.31 by directly showing that π is re-

versible.

Example 7.33 (Google’s random surfer on the word wide web). Consider

the huge graph with vertices as webpages and hyper-links as undirected edges.

Then Model 7.30 gives a random walk on this graph. However if a page

has no links to other pages, it becomes a sink and therefore terminates the

random walk. Let us modify this random walk into a random surf to avoid

getting stuck. If the random surfer arrives at a sink page, she picks another

page at random and continues surfing at random again. Google’s PageRank

formula uses a random surfer model who gets bored after several clicks and

switches to a random page. The PageRank value of a page reflects the chance

that the random surfer will land on that page by clicking on a link. The

stationary distribution of the random surfer on the world wide web is a

very successful model for ranking pages and has grown into a Trillion dollar

company.

7.6 Computer exercises

Exercise 7.34. Take the text file pride_and_prejudice.txt and define a

Markov chain where each state is a word. You could either model everything

as an observation of a single Markov chain, i.e. the entire book is one long

chain. Otherwise you could consider each sentence to be an observation, but

now you have different starting points. You need to assume homogeneity to

estimate the transition matrix.

• Estimate the transition matrix.

• Calculate the probability of going from the word ‘the‘ to the word ‘her‘.

• Use Theorem 7.14 or Exercise 7.15 to generate a sentence using the

estimated transition matrix starting from the word ‘Lady‘.
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Exercise 7.35. Consider a set of bacteria, each bacteria either splits into 2,

stays the same or dies. I.e. each bacteria can create either {0, 1, 2} succes-

sors. The branching process. Let Zn denote the number of bacteria at time

n, let Xn,i be a random variable denoting the number of direct successors

for member i (can only be {0, 1, 2} in period n, where Xn,i are i.i.d., here

n ∈ {0, 1, . . .} and i ∈ {1, . . . , Zn}. The recurrence relation is

Zn+1 =

Zn∑
i=1

Xn,i

with Z0 = 1.

• Is this a Markov chain?

• Let p = (1/3, 1/3, 1/3) be the probabilities of {0, 1, 2} offspring and

simulate the chain.

• We say that the population dies out if Zn = 0 for some n and n

denotes the life-time of the population, by simulation, calculate the

expected life-time of the population.

• If you want to read more, check out the Galton-Watson process.



Chapter 8

Pattern recognition

Let us introduce the pattern recognition problem using computer science
notation (its good for you to see that too, as you will probably be reading
a bunch of cs papers in the future).

Suppose we have n training data points Tn := ((Xi, Yi))
n
i=1 and are

interested in a classification rule h(X) that uses Tn to predict, i.e., assign
labels to previously unseen data X.

Thus, we want our classification rule h, which is typically an algorithm,
to perform well on previously unseen data by learning from the training
data. This is known as generalization.

The space X where Xi belongs to is called the instance space or feature
space and the space Y where Yi belongs to is called the label space.

Typically, X is a subset of Rd and Y is binary label space either as
{0, 1} or {−1, 1}. For example, X can be {0, 1}d to indicate the presence
or absence of something in the instance space, say a specific set of words in
an email if the task is to classify emails with labels 0 and 1 for non-spam or
spam.

Remark 8.1. To connect back to our previous terminology, we see that the

data space X = (X ,Y) (we will later write X × Y to avoid X being used

for both feature and label) is split into the featue space and the label space.

The random variable we are observing is a pair (X,Y ) and a collection of n

samples is the training dataset.

8.1 Linear Classifiers

Let us say that we are trying to device a classification rule based on instance
space X = Rd and label space Y = {−1, 1}.

One of the simplest such rule involves taking weighted sums of the xi’s
until it exceeds a threshold to determine if it should be labelled by +1 or
not. Such rules involve finding a hyperplane of dimension d− 1 to separate

112
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Figure 8.1: Linearly separable data with labels +1 or red and −1 or blue.

out the data with the same labels on each side of the hyperplane. Such a
classification rule is called a linear separator.

Fig. 8.1 shows an example of data that is linearly separable and thus
ideal for linear separators.

8.1.1 Linearly Separable Dataset

Consider the following linearly separable dataset, where we can draw a line
(hyper-plane in R2) to separate the data points with different labels on either
side of the line.

8.1.2 The perceptron algorithm

In the history of artificial intelligence and neural network research, linear
classifiers of this type were called perceptrons. (Fisher’s linear discrim-
ination analysis (LDA, 1936) is also given by a linear classifier). In this
section we present a training algorithm for a perceptron, invented in 1957 at
the Cornell Aeronautical Laboratory by Frank Rosenblatt. The algorithm
created a great deal of interest when it was first introduced. As we will
see, it is guaranteed to converge if there exists a hyperplane that correctly
classifies the training data.

The perceptron algorithm tries to find a linear separator, i.e. a hyper-
plane in Rd that separates the two classes. The task is thus to find w and
t such that for the training data S, the data consists of pairs (xi, li) the xi
represents our features and the li our labels or target.
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w · xi > t for each xi labeled +1

w · xi < t for each xi labeled −1

Adding a new coordinate to our space allows us to consider x̂i = (xi, 1)
and ŵ = (w, t), this allows us to rewrite the inequalities above as

(ŵ · x̂i)li > 0.

The algorithm

1. w = 0

2. while there exists xi with xiyi · w ≤ 0, update w := w + xiyi

[12]: @interact

def _(n_steps=(0,(0..63))):

# X = (n_points,3)

# W = (n_points,3)

n_points = X.shape[0]

W = np.array([0,0,0])

P=points(zip(X1[:,0],X1[:,1]),color=’blue’)

P+=points(zip(X2[:,0],X2[:,1]),color=’red’)

k = 0

max_iter=10000

j = 0

while ((k < n_steps) and (j < max_iter)):

i = j % n_points

j+=1

if (X[i,:]@W * yall[i] <= 0):

W = W + X[i,:]*yall[i]

P+=points(X[i,:2],color=’yellow’)

k+=1

print(W)

Theorem 8.2. If there exists w∗ such that w∗ · xiyi ≥ 1 for all i. Then the

perceptron algorithm finds a w satisfying w · xiyi ≥ 0 for all i in at most

r2|w∗|2 updates, where r = maxi |xi|.

Proof. Lets say we are given a sequence of pointsDn = {(x1, y1), . . . , (xn, yn)}.
Let wi, for i = 0, . . ., denote the weight at update i. That is, w0 = 0 and for

every update i, there is a corresponding index I(i) ∈ {1, . . . , n} such that

wi · xI(i)yI(i) ≤ 0.
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Since we then update the weights, we also have

wi+1 = wi + xI(i)yI(i).

Assuming the statement is true, you expect that wi → w∗ in some capacity,

at least the direction should be close. Secondly, we also know that the

weights most likely grow since we are always adding vectors to it. With this

in mind, let us track two quantities and see how they react to an update:

First let us compute

wi+1 · w∗ = (wi + xI(i)yI(i)) · w∗wi · w∗ + w∗ · xI(i)yI(i) ≥ wi · w∗ + 1.

(8.1)

Then let us compute

|wi+1|2 = wi+1 · wi+1 = (wi + xI(i)yI(i)) · (wi + xI(i)yI(i))

= |wi|2 + 2wi · xI(i)yI(i) + |xI(i)|2

≤ |wi|2 + r2. (8.2)

Since w0 = 0 we get from iterating (8.1) and (8.2) for i = 0, . . . ,m that

wm · w∗ ≥ m

|wm|2 ≤ mr2.

If we use Cauchy-Schwartz for the dot-product we get from the above that

m ≤ wm · w∗ ≤ |wm||w∗| ≤ |w∗|
√
mr.

Now, dividing the left hand side and right hand side with
√
m and skipping

the middle we get

√
m ≤ |w∗|r,

which when squared gives the result.

So this theorem guarantees that if the two classes can be separated then
the preceptron will also find a separator in finite time. This is interesting
since finding the plane that minimizes the error is NP-hard, so this tells us
that if there is separation the problem is “easy”.

What about non-linearly separable data. Let Br = {x ∈ R2 : |x| < r},
then for instance

X = (B4 \B3) ∪B1

and let g∗ = 11B1 . We cannot separate these sets using a linear classifier, see
simulation in notebooks.
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Figure 8.2: Linearly non-separable data in two dimensions.

8.2 Kernelization

What about non-linearly separable data. Take for instance the data formed
by the following operations with points at different distances from the origin
in two dimensions, as shown in Figure 8.2.

X = (B4 \B3) ∪B1

and let c∗ = B1. We cannot separate these sets using a linear classifier

[25]: A = np.random.normal(size=(100,2))

A_unit = A/(np.linalg.norm(A,axis=1).reshape(-1,1))

radial_A = 3+np.random.uniform(size=(100,1))

P=points(A_unit*radial_A,color=’blue’)

B = np.random.normal(size=(100,2))

B_unit = B/(np.linalg.norm(B,axis=1).reshape(-1,1))

radial_B = np.random.uniform(size=(100,1))

P+=points(B_unit*radial_B,color=’red’)

P.show()

[25]: we can however separate the following mapping of X. Namely in R2 we
can do

ϕ(x) = (x1, x2, x
2
1 + x22) ∈ R3

This is clearly linearly separable as we can see from the following 3d plot
shown in Figure 8.3.

[27]: A_2d = A_unit*radial_A

A_3d = np.concatenate([A_2d,np.linalg.norm(A_2d,axis=1).reshape(-1,1)^2],axis=1)

B_2d = B_unit*radial_B

B_3d = np.concatenate([B_2d,np.linalg.norm(B_2d,axis=1).reshape(-1,1)^2],axis=1)

P=points(A_3d,size=20,color=’blue’)

P+=points(B_3d,size=20,color=’red’)

P.show()
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Figure 8.3: Linearly separable in three dimensions after (x1, x2) 7→
(x1, x2, x

2
1 + x22).

Remember the extra dimension that we always add to simplify
notation. Therefore the full ϕ in the above examples is ϕ̂(x) =
(x1, x2, x

2
1 + x22, 1).

So if we transform the x → ϕ(x) for some good transformation ϕ then
our perceptron will try to solve

w · ϕ(xi)li > 0

furthermore, remember how we constructed w using the perceptron algo-
rithms, i.e. using additions of xili, which transforms into ϕ(xi)li, and we
start with w = 0, this gives that the weight has the form

w =
n∑

i=1

ciϕ(xi)

for numbers ci. The perceptron algorithm becomes just addition and sub-
traction of certain ci’s by 1.

Furthermore

w · ϕ(xi) =
n∑

j=1

cjϕ(xj) · ϕ(xi) =
n∑

j=1

cjkij

where kij = ϕ(xi) · ϕ(xj).
Is it easy to find such a mapping ϕ? No, it is actually quite difficult.

Furthermore, if the mapping ϕ is high dimensional we might need to do alot
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of computation, which is not so efficient. What if we had a function k(x, y)
that could be written as

k(x, y) = ϕ(x) · ϕ(y)

for some ϕ and k is easier to compute, then our life would be simpler. Also,
what if we are given a function k(x, y) and we would like to know if it is a
“kernel function”.

Lemma 8.3. Given a sequence of points {xi}ni=1, xi ∈ Rd, and given an

n× n matrix K, which is symmetric and positive semidefinite. Then, there

is a mapping ϕ : Rd → Rm (for some m) such that Kij = ϕ(xi) · ϕ(xj).

Exercise 8.4. Prove the above Lemma using the following outline for it:

1. K = QΛQT (eigendecomposition)

2. K is positive definite, all eigenvalues ≥ 0, so we can define B = QΛ1/2.

3. K = BBT

4. define ϕ(xi) = Bi·, i.e. the i:th row of B, then Kij = ϕ(xi) · ϕ(xj).

5. What is the size of m?

We now have a way to identify whenever a matrix K is a kernel matrix.
There are some standard choices of kernel functions one could try, that
produces positive semi-definite matrices whenever all points xi are distinct.

Definition 8.5. We call a function k(x, y) : Rd×Rd → R a kernel function

if there is a mapping ϕ : Rd → Rm (for some m) such that k(x, y) =

ϕ(x) · ϕ(y).

Theorem 8.6. Suppose k1, k2 : Rd × Rd → R are kernel functions. Then

1. For any constant c ≥ 0, ck1 is a kernel function.

2. For any scalar function f , k(x, y) = f(x)f(y)k1(x, y) is a kernel func-

tion.

3. k1 + k2 is a kernel function. 4. k1k2 is a kernel function.

Exercise 8.7. Prove Theorem 8.6.

Corollary 8.8. The following functions are kernel function

• k(x, y) = (γx · y + r)k, (k ∈ N) polynomial

• k(x, y) = x · y, linear

Exercise 8.9. Prove the above corollary by multiple applications of Theo-

rem 8.6.
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8.2.1 Other types of Kernels

The above concept of a kernel function is a simplification, we can also have
the following kernels for which ϕ maps to ”infinite dimensions”:

1. k(x, y) = e−γ|x−y|, called Radial Basis Function

2. k(x, y) = tanh(γx · y + r), sigmoidal

8.3 Theoretical guarantees

Recall that in the pattern recognition model (Section 4.1.3) we assume that
the supervisors conditional distribution F (y|x) is discrete, and can take k
different values, y = 0, . . . , k − 1.

Recall the 0− 1 loss function for z = (x, y)

L(z, u) =

{
0 if y = u

1 if y ̸= u

that is, the loss is 1 if u is the wrong value and 0 if it is correct. The pattern
recognition problem is the problem of minimizing the functional

R(g) =

∫
L(y, g(x))dF (x, y) = E [L(Y, g(X))]

where (X,Y ) ∼ F (x, y).
Also recall that,

E [L(Y, gλ(X))] = P({Y ̸= gλ(X)}).

As we have alluded to in Section 5.3 is that we want to minimize the em-
pirical version of the risk and hope that we can get reasonable concentration
estimates, as in Theorem 5.27.

Definition 8.10. Given a probability triple (Ω,F ,P), and assume that Z =

((X1, Y1), (X2, Y2), . . . , (Xn, Yn))
IID∼ F (x, y) is a sequence of Rm+1 valued

random variables taking values in the data space X × Y. We define the

empirical risk for a function g : X → Y as

R̂n(g) = R̂n(Z; g) =
1

n

n∑
i=1

L(Yi, g(Xi)).

Note that the empirical risk is a statistic evaluated on Z.
We would like to minimize the risk, but we only have access to Z =

((X1, Y1), (X2, Y2), . . . , (Xn, Yn))
IID∼ F (x, y), so we can in practice only try

to minimize the empirical risk. So given a model space M we consider

ĝ∗n := ĝ∗n(Z) := argmin
g∈M

R̂n(g).
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The first realization here is now that ĝ∗n is a random variable that depends
on Z, which means that it is not immediate that

R̂n(Z; g
∗
n(Z))

is unbiased, in fact, since we are minimizing the risk it is quite possibly
downward biased. However, even if it is downward biased one could hope
that in some cases the bias is small when n is large.

8.3.1 Guarantees with a held out testing set

The problem with using the value of the empirical risk above is that we
are evaluating on the “training-data”, if we however have access to a test-
ing dataset, then we can give some guarantees in the pattern recognition
problem.

Consider a data set Tn+m := {(X1, Y1), . . ., (Xn+m, Yn+m)} sampled
i.i.d from FX,Y . We consider {(X1, Y1), . . ., (Xn, Yn)} (which we dub the
training data) and {(Xn+1, Yn+1), . . ., (Xn+m, Yn+m)} (which we dub the
testing data). Define ϕ̂ the empirical risk minimizer on the training
dataset, namely

R̂n(ϕ̂) = min
ϕ∈M

R̂n(ϕ)

then since the testing dataset is independent of the training dataset and
hence ϕ̂ is independent of the testing data, we deduce using Theorem 3.6
that if R̂m(ϕ) denotes the empirical risk over the testing dataset we have
(Provided R is nice enough)

P(|R̂m(ϕ̂)−R(ϕ̂)| > ϵ | Tn) < 2e−Cϵ2n. (8.3)

Now again using the tower property we can get

P(|R̂m(ϕ̂)−R(ϕ̂)| > ϵ) < 2e−Cϵ2n. (8.4)

This is a procedure which always works when the loss is bounded, like
0−1 loss. The risk on the testing data-set can even be exchanged for another
loss, i.e. different than the training loss.

Exercise 8.11. In the above we are mentioning that R needs to be nice

enough, why is that? Does 0− 1 loss work? Why?

Furthermore, we used the tower property to derive (8.4) from (8.3), how

does this work?

Remark 8.12. In many machine learning text-books that are practically ori-

ented, you will see the recommendation that the training/testing split should

be 70/30. In the pattern recognition problem this doesn’t make much sense,
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it is better to determine with how high probability you want the bound to

hold and use that to choose the number of samples to reach a tight enough

interval.

Remark 8.13. Note that the testing estimate above is only valid if done

once, as the probability is over the testing set. Since we only have one, it

can only be used once.

It should be noted that during other courses you will encounter what
seems to be a violation to the above, i.e. with the introduction of a test set
and a validation set. In this setup the test set is used several times to select
the best out of a set of different models, the best model is then chosen and
the performance is evaluated on the validation data. In this setup one is
not too concerned with the fact that the test set is used several times, as
it is only used to select the model. The final performance evaluation, done
once will satisfy the concentration bound (8.3).

Exercise 8.14. In kaggle competitions and other online data-science com-

petitions, several teams try to produce a model on a training data-set. When

the team submits their proposed model it is validated on a hidden test-set

(same for all teams). The teams are then ranked according to the score on

the hidden test set. Does this mean that the best team had the best model?

Do you think it would look the same if we repeated this with other hidden

test-sets?

8.3.2 Other test metrics

In the practical usage of the pattern recognition problem, one often sees the
use of the test-metrics Precision and Recall. For class 1 they are defined as
the following conditional probabilities

Precision: P(Y = 1 | g(X) = 1)

Recall: P(g(X) = 1 | Y = 1).

Recall in particular is often used in medical testing and are then called
sensitivity.

Exercise 8.15. Lets say we have trained an ML model and gotten g as out-

put, and lets say we want to use the test-set to estimate precision and recall.

Lets say you wish to give a guarantee using for instance ”concentration of

measure” in the following scenarios

1. The function g is always 1

2. The function g is always 0
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3. P (Y = 1) is close to 0

4. P (Y = 1) is close to 1.

Which of these problems are easier and which are harder? What if we switch

to estimating precision and recall for class 0?

8.4 Empirical Risk Minimization for Linear Clas-

sifiers

If we restrict the “complexity” of the decision functions, complexity will
be defined. Then, we can give some guarantees without having to resort to
a test-set that can only be used once. A form of a-priori estimate. These
estimates are very very strong, but a bit restrictive.

Consider the data space X × Y = Rm × {0, 1}, then a linear decision
function is given as

ϕa(x) =

{
1 if (a′)Tx+ a0 > 0

0 otherwise

where a = (a′, a0) ∈ Rm+1. The model space corresponding to linear deci-
sion rules is

M =
{
ϕa : a ∈ Rm+1

}
= { all linear decision rules }.

We can index M using a ∈ Rm+1.

8.4.1 A classifier with finitely many hyperplanes (without

testing)

Instead of choosing M to be indexed by a ∈ Rm+1 with uncountably in-
finitely many possibilities for ϕ, we will limit ourself to minimizing the
empirical risk over finitely many linear decision rules – exactly 2

(
n
m

)
that

are defined by each of the m choices from the n training points in Dn =
{X1, . . . , Xn}.

Consider choosing m arbitrary points (Xi1 , Xi2 , . . . , Xim) from the train-
ing data {X1, X2, . . . , Xn}, and let (a′)Tx+ a0 = 0 be the hyper-plane con-
taining these m points, i.e., x = (xi1 , xi2 , . . . , xim). If we assume that Xi

are continuous random variables, the m points are in general position1 with
probability 1 and this hyperplane is unique determining two decision rules:

ϕ+(x) =

{
1 if aTx+ a0 > 0

0 otherwise

1https://en.wikipedia.org/wiki/General_position and Exercise 8.17

https://en.wikipedia.org/wiki/General_position
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and

ϕ−(x) =

{
1 if aTx+ a0 < 0

0 otherwise

with empirical risks or misclassification training errors R̂n(ϕ+) and R̂n(ϕ−).
Thus to each m-tuple of data points we can associate two decision rules to
yield a total of 2

(
n
m

)
such decision rules. Let us denote these decision rules

by Mn = {ϕ1, . . . , ϕ2(n
m)

}.
Now let ϕ̂ be a decision rule that minimizes R̂n(ϕi) over all i ∈ {1, 2, . . . , 2

(
n
m

)
},

i.e.

R̂n(ϕ̂) = min
ϕ∈Mn

R̂n(ϕ). (8.5)

Theorem 8.16. Let (Ω,F ,P) be a probability triple and consider (X1, Y1),

. . ., (Xn, Yn) be an i.i.d. sequence of random variables, Xi being continuous

and taking values in Rm and Yi ∈ {0, 1} is discrete. If ϕ̂ is defined as in

(8.5), then, if 2m/n ≤ ϵ ≤ 1, we have

P{R(ϕ̂) > inf
M
R(ϕ) + ϵ} ≤ e2mϵ

(
2

(
n

m

)
+ 1

)
e−nϵ2/2.

Proof. Denote ϕ∗ ∈ M a decision rule that satisfies

R(ϕ∗) = inf
M
R(ϕ).

Furthermore, note that if we take a ϕ ∈ M then at most it can make m

better predictions than ϕ̂, as it could be that the plane that defines ϕ does

not touch any Xi,

R̂n(ϕ̂) ≤ R̂n(ϕ) +
m

n
.

Now elementary considerations give together with the above,

I0 := R(ϕ̂)− inf R(ϕ) = R(ϕ̂)− R̂n(ϕ̂) + R̂n(ϕ̂)− inf R(ϕ)

≤ R(ϕ̂)− R̂n(ϕ̂) + R̂n(ϕ
∗)−R(ϕ∗) +

m

n

≤ max
1≤i≤n

(R(ϕi)− R̂n(ϕi)) + R̂n(ϕ
∗)−R(ϕ∗) +

m

n

=: max
1≤i≤n

I1,i + I2 +
m

n

The reason we want to bound the difference this way is that we wish to

apply concentration inequalities to both of these terms, i.e. we want to use
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the fact that if n is large, there is a high probability that the empirical risk

is close to the true risk.

From the properties of probability (monotonicity and Boole’s inequality)

we get (denoting N = 2
(
m
n

)
)

P(I0 > ϵ) ≤ P( max
1≤i≤N

I1,i + I2 +
m

n
> ϵ)

≤ P( max
1≤i≤N

I1,i > ϵ/2) + P(I2 > ϵ/2− m

n
)

≤
N∑
i=1

P(I1,i > ϵ/2) + P(I2 > ϵ/2− m

n
) (8.6)

Now, let us first bound P(I2 > ϵ/2 − m/n). This is easy, because

L(Yi, ϕ
∗(Xi)) is a sequence of independent bounded random variables, i.e.

we can apply Hoeffdings inequality Theorem 3.6 to get (if ϵ/2−m/n > 0)

P(I2 > ϵ/2−m/n) = P(R̂n(ϕ
∗)−R(ϕ∗) > ϵ/2− m

n
) ≤ e−2n(ϵ/2−m

n
)2 .

(8.7)

To bound P(I1,i > ϵ/2) we will make use of the tower property Theorem 2.60

and note that

P(I1,i > ϵ/2) = E [P(I1,i > ϵ/2 | Xi1 , . . . , Xim)] (8.8)

Let Ki = {i1, . . . , im} be the set of indices of points used to construct ϕi,

then

P(I1,i > ϵ/2 | {Xk, k ∈ Ki})

= P

R(ϕi)− 1

n

n∑
j=1

L(Yj , ϕi(Xj)) > ϵ/2

∣∣∣∣ {Xk, k ∈ Ki}


≤ P

R(ϕi)− 1

n

n∑
j=1,j ̸∈Ki

L(Yj , ϕi(Xj)) > ϵ/2

∣∣∣∣ {Xk, k ∈ Ki}

 .

Now, from this point we can go different paths, but we will use the ob-

servation that all L(Yj , ϕi(Xj)) are Bernoulli(R(ϕi)) for j ̸∈ Ki, if we add

Z1, . . . , Zm i.i.d. from Bernoulli(R(ϕi)), also independent of L(Yj , ϕi(Xj))
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for j ̸∈ Ki, then we can apply Hoeffding to the following

P

R(ϕi)− 1

n

n∑
j=1,j ̸∈K

L(Yj , ϕi(Xj)) > ϵ/2

∣∣∣∣ {Xk, k ∈ K}


≤ P

R(ϕi)− 1

n

n∑
j=1,j ̸∈J

L(Yj , ϕi(Xj))−
1

n

m∑
j=1

Zi > ϵ/2− m

n

∣∣∣∣ {Xk, k ∈ K}


≤ e−2n(ϵ/2−m/n)2 .

Recalling (8.6)–(8.8) we obtain

P(I0 > ϵ) ≤ 2

(
n

m

)
e−2n(ϵ/2−m/n)2 + e−2n(ϵ/2−m

n
)2

=

(
2

(
n

m

)
+ 1

)
e−2n(ϵ/2−m/n)2 .

The final step is to realize that

2n(ϵ/2−m/n)2 >
nϵ2

2
− 2mϵ.

Exercise 8.17. Consider X1, . . . , Xm+1 be i.i.d. Rm valued continuous ran-

dom variables. Use the tower property to prove that the probability of these

points to lie in the same hyperplane is zero. Using this, show the assump-

tion of general position needed to construct the decision rules we worked with

above.

8.5 Preliminaries for VC theory

Definition 8.18 (empirical measure).

µn(A) =
1

n

n∑
i=1

1Xi∈A

We can deduce also that

Lemma 8.19.

R(ϕ∗n)− inf
ϕ∈C

R(ϕ) ≤ 2 sup
ϕ∈C

|R̂n(ϕ)−R(ϕ)|
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8.6 VC theory

We have just studied a specific class of decision rules that where constructed
using the observations, and we see that the rule selected by (8.5) is indeed
very good. It performs very closely to the best possible!! However our
method of proof relies on the way that the rule is constructed and in par-
ticular does not allow us to minimize the empirical risk over M instead of
Mn. To cope with this, we need to develop some theory that stems from
the works of Vapnik and Chervnonenkis, [SLT]. For this we will transition
from viewing the decision rules as functions to viewing them as sets, as a
decision rule from M splits Rm×{0, 1} into two pieces, one which gives zero
loss and one part which gives loss 1. Define,

A := {{(x, y) ∈ Rm × {0, 1} : L(y, ϕ(x)) = 1} : ϕ ∈ M}, (8.9)

and denote by ν = dF (x, y) and νn the empirical measure with respect to
the data set Dn = {(X1, Y1), . . . , (Xn, Yn)}. The above definition allows us
to rephrase

P(sup
M

|Rn(ϕ)−R(ϕ)| > ϵ) = P(sup
A∈A

|νn(A)− ν(A)| > ϵ). (8.10)

Exercise 8.20. Derive (8.10). Think about the following, given a decision

function ϕ ∈ M, then for this function ϕ there is a corresponding set A ∈ A
as in (8.9). The measure ν(A) is simply

ν(A) = P((X,Y ) ∈ A) = P(L(Y, ϕ(X)) = 1) = P(Y ̸= ϕ(X))

and the empirical measure is

νn(A) =
1

n

n∑
i=1

11(Xi,Yi)∈A =
1

n

n∑
i=1

11L(Yi,ϕ(Xi))=1 =
1

n

n∑
i=1

L(Yi, ϕ(Xi)).

This puts our problem in the framework of uniform convergence of em-
pirical measures UCEM. The uniform is because we have the supremum
inside the probability. Recall, we have already seen an example of this!! If
we consider the sets A = (−∞, a) then we are in the setting of Theorem 5.27.

If |A| <∞, then we could simply use Hoeffdings inequality, Theorem 3.6,
to obtain

P (sup
A∈A

|νn(A)− ν(A)| > ϵ) ≤ 2|A|e−2nϵ2 .

Exercise 8.21. Use the Union bound and Theorem 3.6 to prove the above

inequality.

However, even in the simple case of linear decision functions, M, we
have an uncountably infinite set.
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Lemma 8.22. Consider a sequence of i.i.d. random variables Z1, . . . , Z2n ∼
ν, split this into two datasets Dn = {Z1, . . . , Zn} and D′

n = {Zn+1, . . . , Z2n}.
Let nϵ2 ≥ 2, then if we denote νn, ν

′
n the empirical measure over Dn and D′

n

respectively, we have

P
[
sup
A∈A

|ν(A)− νn(A)| > ϵ

]
≤ 2P

[
sup
A∈A

∣∣νn(A)− ν ′n(A)
∣∣ > ϵ

2

]
Proof. Let A∗ ∈ A be a set for which |νn(A∗) − ν(A∗)| > ϵ, if such a set

exists, otherwise we can let A∗ be a fixed set in A. NOTE: A∗ is a random

set that depends on Dn. Now

P(sup
A∈A

∣∣νn(A)− ν ′n(A)
∣∣ > ϵ/2)

≥ P(
∣∣νn(A∗)− ν ′n(A

∗)
∣∣ > ϵ/2)

≥ P(|ν(A∗)− νn(A
∗)| > ϵ,

∣∣ν(A∗)− ν ′n(A
∗)
∣∣ < ϵ/2)

= E [11|ν(A∗)−νn(A∗)|>ϵ P(
∣∣ν(A∗)− ν ′n(A

∗)
∣∣ < ϵ/2

∣∣ Dn)]

Now, conditioned on Dn, the set A∗ is fixed and ν ′n(A
∗) is the mean of

n independent Bernoulli(ν(A∗)) r.v.s., hence using Chebyshev’s inequality

(Proposition 3.2)

P(
∣∣ν(A∗)− ν ′n(A

∗)
∣∣ < ϵ/2

∣∣ Dn) ≥ 1−
1
nν(A

∗)(1− ν(A∗))

(ϵ/2)2
≥ 1/2,

in the last step we used the assumption nϵ2 ≥ 2. Putting it all together we

now get

P(sup
A∈A

∣∣νn(A)− ν ′n(A)
∣∣ > ϵ/2) ≥ 1

2
E [11|ν(A∗)−νn(A∗)|>ϵ]

=
1

2
P(|ν(A∗)− νn(A

∗)| > ϵ)

=
1

2
P(sup

A∈A
|ν(A)− νn(A)| > ϵ)

where in the last step we used the definition of A∗.

Now, this lemma gives us precisely what we want, namely to reduce the
size of A from infinite to finite. This we do as follows

• Given a dataset Dk = {Z1, . . . , Zk} we say that A,B ∈ A are equiva-
lent if A ∩Dk = B ∩Dk.

• This equivalence relation defines equivalence classes on A given Dk,
let us denote this set ADk

.
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• It is clear that

1. ADk
is finite,

2. it satisfies |ADk
| ≤ |2Dk |,

3. non-decreasing with k. (In most interesting cases it grows with
k).

Example 8.23. Consider R2 and consider the set M linear decision rules

and construct the corresponding A. Let us now take say two points and

labels (x0, y0), (x1, y1) ∈ R2 × {0, 1}. Given two different linear functions

ϕ1, ϕ2 ∈ M construct A,B ∈ A, as follows

A = {(x, y) ∈ R2 × {0, 1}, L(y, ϕ1(x)) = 1}
B = {(x, y) ∈ R2 × {0, 1}, L(y, ϕ2(x)) = 1}

we would then say that A,B are equivalent if A ∩ {(x0, y0), (x1, y1)} =

B∩{(x0, y0), (x1, y1)}. What does this mean? It means that L(y0, ϕ1(x0)) =

L(y0, ϕ2(x0)) and L(y1, ϕ1(x1)) = L(y1, ϕ2(x1)) which is the same as saying

that ϕ1(x0) = ϕ2(x0) and ϕ1(x1) = ϕ2(x1). In short, the two decision func-

tions ϕ1, ϕ2 assigns the same values to x0, x1 and are thus undistinguishable

on these points.

Again, let us repeat. The concept of grouping together several decision

functions is to say that on our dataset each labeling has with it an equivalence

class of decision functions which produce said labeling.

Definition 8.24. The largest size of ADn for a given n is called the shat-

tering number for A given n

s(A, n) = sup
x1,...,xn

|A{x1,...,xn}|

Example 8.25. Consider the decision function as being an inequality i.e.

ϕ(x) = 11x>x0. Then the corresponding sets A is as follows

{(x, y), x ∈ R, y ∈ {0, 1} : 11x>x0 ̸= y}
= {(x, y) : x ∈ (0, x0], y = 1} ∪ {(x, y) : x ∈ (x0,∞), y = 0}.

Consider now two points (x1, 1), (x2, 0) with x1 < x2, then we are counting

the number of sets of the form {(x1, 1), (x2, 0)}∩A. For any decision function

there is a threshold x0, either x0 < x1, x2 and we get the set

{(x2, 0)}
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if x1 < x0 < x2 then we get

{(x1, 1), (x2, 0)}

and if x1 < x2 < x0

{(x1, 1)}

Thus all in all we have three sets. Note that we did not actually create the

empty set.

This is all equivalent to saying that the number of distinct labelings that
the decision function can produce for two points is 3.

Definition 8.26. For a set of points Gn = {z1, . . . , zn} we say that A
shatters Gn if

|A{z1,...,zn}| = 2n

What does the above actually mean in terms of the decision function?
It means that the decision function can produce all possible labelings of the
corresponding set {x1, . . . , xn}, with zi = (xi, yi).

Lemma 8.27. Let σ1, . . . , σn be a i.i.d. sequence of Rademacher random

variables, (i.e. is equal to 1 or −1 with equal probability), then

P

[
sup

A∈ADn∪D′
n

∣∣νn(A)− ν ′n(A)
∣∣ > ϵ

2

]

≤ 4s(A, n) sup
A∈A

P

[
1

n

∣∣∣∣∣
n∑

i=1

σi11A(Zi)

∣∣∣∣∣ > ϵ

4

]

Proof. The above definition of equivalence classes suggests that we should

be able to use the union bound to prove this lemma. We however need

to circumvent the technical hurdle that the equivalence classes depend on

Dn ∪D′
n. This can however be done by again performing a symmetrization

with respect to the sign of νn(A)− ν ′n(A) (this is the right hand side of the

above), for details see [PTPR, Thm 12.4].

Lemma 8.28.

P

[
1

n

∣∣∣∣∣
n∑

i=1

σi11A(Zi)

∣∣∣∣∣ > ϵ

4

]
≤ 2e−nϵ2/32
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Proof.

P

[
1

n

∣∣∣∣∣
n∑

i=1

σi11A(Zi)

∣∣∣∣∣ > ϵ

4

]
= E

[
P

[
1

n

∣∣∣∣∣
n∑

i=1

σi11A(Zi)

∣∣∣∣∣ > ϵ

4

∣∣∣∣ Dn

]]

Now the conditional probability is easy to bound, as given Dn
∑n

i=1 σi11A(Zi)

is the sum of n independent and bounded (in {−1, 1}) random variables, we

can use Hoeffdings bound (Theorem 3.6) to get

P

[
1

n

∣∣∣∣∣
n∑

i=1

σi11A(Zi)

∣∣∣∣∣ > ϵ

4

∣∣∣∣ Dn

]
≤ 2e−nϵ2/32

which proves the lemma.

We are now ready to prove the VC generalization bound

Theorem 8.29. Consider a sequence Z1, . . . , Zn ∼ ν of i.i.d. random vari-

ables and let A be a set of ν-measurable sets, then if nϵ2 ≥ 2 we have

P(sup
A∈A

|νn(A)− ν(A)| > ϵ) ≤ 8s(A, n)e−nϵ2/32

Exercise 8.30. Prove the above theorem using Lemmas 8.22, 8.27 and 8.28.

We also have this immediate corollary

Corollary 8.31. Let (Ω,F ,P) be a probability triple and consider (X1, Y1),

. . ., (Xn, Yn) be an i.i.d. sequence of random variables, Xi being continuous

and taking values in Rm and Yi ∈ {0, 1} is discrete. Then if n(ϵ)2 ≥ 8 the

following holds

P(sup
M

|Rn(ϕ)−R(ϕ)| > ϵ) ≤ 8s(A, n)e−nϵ2/64.

In the above, A is derived from M as in (8.9).

8.7 Vapnik Chervonenkis dimension

Definition 8.32. The VC-dimension of A, denoted by VA, equals the largest

integer n ≥ 1 such that

s(A, n) = 2n.

If the above equality holds for all n we say that VA = ∞.
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Example 8.33. Consider sets of the form

A = {(0, x0]× {1}} ∪ {(x0,∞)× {0} : x0 ∈ R}

which corresponds to a decision rule as in Example 8.25. What is s(A, 1)?
Consider a single points (x1, y1), x1 ∈ R and y1 ∈ {0, 1}. Then for y1 = 0

we get

A(x1,y1) = {{(x1, y1)}, ∅}

and for y1 = 1 we get also two sets. So s(A, 1) = 2 which is 21 so VA ≥ 1.

Now consider two points, we already saw this in Example 8.25 where we

only got 3 sets which is less than 22 = 4 (check that this is so for any other

labeling as well). Conclusion is that VA = 1.

Example 8.34. Lets consider the sets

A = {{(a, b)× (c, d)} × {0} ∪ {(a, b)× (c, d)}C × {1} ⊂ R2 × {0, 1} : a < b, c < d}

that is, this corresponds to a classifier which classifies everything within an

axis parallel rectangle as 1 and outside as 0. Now, the realization should

be that it is enough to check how many different labelings we can create

using rectangles. Consider a diamond pattern set of points in R2, i.e.

{(1, 0), (0, 1), (−1, 0), (0,−1)}, using axis-parallel rectangles it should be clear

that we can create all possible labelings.

Now consider 5 points, how do we realize that no matter how we do this

can we create all labelings. To see this, assume for contradiction we can

produce any labeling. Find the minimum enclosing rectangle for the five

points. Let us now think that the points which touch the edges will be given

as class 1 and the last point as class 0, but this point is inside the set and

as such cannot be labeled as that. This gives us that the VC dimension of

these axis parallel rectangles is 4.

Example 8.35. Let us now consider the following class of sets consisting

of polygons as in the example above. Then for any number of points placed

along a unit circle we can produce any labeling, why? because if we select a

subset of the points and then construct a polygon with those points as corners

then this will label them as we wish. This means that any number of points

can be labeled and we thus get that the VC dimension is infinite.

Lemma 8.36 (Sauer–Shelah lemma (1972)). For any positive integer N we

have

s(H, N) ≤
VH−1∑
i=0

(
N

i

)
.
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Proof. Out of scope.

Lemma 8.37. The Sauer–Shelah lemma (Lemma 8.36) is a polynomial up-

per bound, i.e.

k−1∑
i=0

(
N

i

)
≤
(
Ne

k

)k

.

Proof. Let λ ∈ (0, 1) then

1 = (λ+ (1− λ))N

≥
λN∑
i=1

(
N

i

)
λi(1− λ)n−1

≥
λN∑
i=1

(
N

i

)(
λ

1− λ

)λn

(1− λ)n

Thus

λN∑
i=1

(
N

i

)
≤ eN((λ−1) log(1−λ)−λ log(1−λ))

≤ eN(λ−λ log(1−λ))

=

(
eN

λN

)λN

Then for k = λN we have our result.

Let us now turn our focus back towards the problem of the linear clas-
sifier.

Lemma 8.38. (informal) A linear classifier in Rm has VC-dimension m+1.

Exercise 8.39. State and prove exactly what the above lemma means.

Exercise 8.40. Continuing on from the above exercise, apply Corollary 8.31

and Lemmas 8.36 and 8.37 to obtain a generalization of Theorem 8.16 which

you state and prove.

8.8 What if you don’t care about inf R(ϕ)?

We begin with an extension of Theorem 3.6 (Hoeffdings theorem) to a se-
quence of dependent variables, specifically we consider
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Definition 8.41. A sequence of random variables V1, . . . is a martingale

difference sequence if

E [Vi+1 | V1, . . . , Vi] = 0, a.s.

for every i > 0. A sequence of random variables V1, V2, . . . is called a mar-

tingale difference sequence with respect to a sequence of random variables

X1, X2, . . ., if for every u > 0, Vi is a function of X1, X2, . . ., and

E [Vi+1 | X1, . . . , Xi] = 0, a.s.

This extended version of Hoeffdings theorem will be proved in the the-
oretical foundations course, if you are interested in the proof, see [PTPR,
Thm 9.1].

Theorem 8.42. Let X1, . . . be a sequence of RV’s and assume that V1, . . . is

a martingale difference sequence with respect to X1, . . .. Assume that there

exists random variables Z1, . . . and nonnegative constants c1, . . . such that

for every i > 0, Zi is a function of X1, . . . , Xi−1 and

Zi ≤ Vi ≤ Zi + ci, a.s.

Then for any ϵ > 0 and n

P

(
n∑

i=1

Vi ≥ ϵ

)
≤ e

− 2ϵ2∑n
i=1

c2
i

and

P

(
n∑

i=1

Vi ≤ −ϵ

)
≤ e

− 2ϵ2∑n
i=1

c2
i

Interestingly, the empirical error probability of the empirically optimal
classifier is with high probability close to its expected value. This is very
interesting, and in the case that if the empirical minimizer of the risk is
a consistent estimator, we get the best one could hope for. However it
should be mentioned again that Rn(ϕ

∗
n) is quite often a downward biased

estimator of R(ϕ∗), that is, E [Rn(ϕ
∗
n)] < inf R(ϕ∗). Therefore, this whole

deal with complexity tells us that Rn(ϕ
∗
n) is asymptotically consistent if we

have bounded VC-dimension.

Theorem 8.43. Consider a sequence (X1, Y1), . . . , (Xn, Yn) ∼ ν of i.i.d.

random variables, let C be an arbitrary set of classification rules. Let ϕ∗n ∈ C
be the rule that minimizes the empirical risk given (X1, Y1), . . . , (Xn, Yn),

i.e.

Rn(ϕ
∗
n) = min

ϕ∈C
Rn(ϕ).



CHAPTER 8. PATTERN RECOGNITION 134

Then for every n and ϵ > 0,

P
(∣∣∣R̂n(ϕ

∗
n)− E [R̂n(ϕ

∗
n)]
∣∣∣ > ϵ

)
< 2e−nϵ2/2

Proof. Begin by defining

Qi := E [Rn(ϕ
∗
n) | X1, . . . , Xi], i = 1, . . . , n

Q0 := E [Rn(ϕ
∗
n)]

furthermore, note that Qn = Rn(ϕ
∗
n) and that

Qi−1 −
1

n
≤ Qi ≤ Qi−1 +

1

n

since changing the value of one pair (Xi, Yi) can only change the risk by 1/n

(1 extra or one less error in classification). If we now denote

Vi = Qi −Qi−1, i = 1, . . . , n

then Vi is a martingale difference sequence w.r.t. (Xi, Yi) for i = 1, . . . , n.

Furthermore, if we define Zi = −1/n then

Zi ≤ Vi ≤ Zi +
2

n
.

Applying Theorem 8.42 we obtain

P

(∣∣∣∣∣
n∑

i=1

Vi

∣∣∣∣∣ > ϵ

)
≤ 2e

− 2ϵ2∑n
i=1

(2/n)2 = 2e−nϵ2/2

8.9 Bibliography

The perceptron and kernel part is mostly from [BlHo]. Section 8.4 is mostly
covered in [PTPR] Chapter 4. Section 8.6 and the rest is scattered around
in [PTPR] and other sources.



Chapter 9

Regression

The main difference between regression and pattern recognition is that the
loss function l(y, g(x)) is real valued instead of being discrete. What we
will do in this chapter is to outline how to modify the ideas for the pattern
recognition problem to obtain generalization estimates for real valued loss
functions, which includes regression.

It however turns out that dealing with unbounded loss functions is tech-
nically difficult and we will not cover it here, if you want more information,
take a look at [SLT].

As in the pattern recognition problem, we want to bound

P(sup |Rn(ϕ)−R(ϕ)| > ϵ) (9.1)

we did that by rephrasing this as a problem of estimating empirical measures
on certain classes of sets. How do we do the same for the problem where
l(y, g(x)) can take any value between [0, 1] for instance?

Consider a function 0 ≤ Φ(z) ≤ 1, and consider a sequence of i.i.d.
random variables Z,Zi ∼ ν, then

E [ϕ(Z)]− 1

n

n∑
i=1

ϕ(Zi)

=

∫ 1

0
(ν(Φ(z) > t)− νn(ϕ(z) > t)) dt

≤ sup
β∈[0,1]

(ν(Φ(z) > β)− νn(ϕ(z) > β))

∫ 1

0
dt

= sup
β∈[0,1]

(ν(Φ(z) > β)− νn(ϕ(z) > β))

where νn is the empirical measure based on Z1, . . . , Zn.
That is, if we have a model space M of decision functions and a loss

l(y, g(x)), for g ∈ M taking values in [0, 1], then if we construct the class of

135
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sets as follows

A =
{
{(x, y) : l(y, g(x))− β > 0} : β ∈ (0, 1)

}
, (9.2)

we can rewrite (9.1) in the following way

P(sup
M

|Rn(ϕ)−R(ϕ)| > ϵ) ≤ P(sup
A∈A

|νn(A)− ν(A)| > ϵ).

Now we are exactly the same situation as in (8.10) and we can apply Theo-
rem 8.29 to get

Corollary 9.1. Let (Ω,F ,P) be a probability triple and let (X1, Y1), . . .,

(Xn, Yn) be an i.i.d. sequence of random variables, Xi being continuous and

taking values in Rm and Yi ∈ R. Then if nϵ2 ≥ 8 the following holds

P(sup
M

|Rn(ϕ)−R(ϕ)| > ϵ) ≤ 8s(A, n)e−nϵ2/64.

In the above, A is derived from M as in (9.2).

Example 9.2. Assume that g(x) ∈ [0, 1] and that l(y, x) = (y − x)2, then

{(x, y) : l(y, g(x))− β > 0} = {(x, y) : |y − g(x)| >
√
β}

that is, for every fixed value of x, the set is all y which are at distance

greater than
√
β from g(x). That is, this is the complement to a tubular

region around the graph g(x).

A similar observation can be made for any convex loss function, it is

thus clear that the growth function will often only depend on the complexity

of M instead of depending on the choice of loss.

9.1 Guarantees with a held out testing set

Consider as in Section 8.3.1 the following notation. Consider a data set
Tn+m := {(X1, Y1), . . ., (Xn+m, Yn+m)} sampled i.i.d from FX,Y . We con-
sider {(X1, Y1), . . ., (Xn, Yn)} (which we dub the training data) and {(Xn+1, Yn+1),
. . ., (Xn+m, Yn+m)} (which we dub the testing data). Define ϕ̂ the empiri-
cal risk minimizer on the training dataset, namely

R̂n(ϕ̂) = min
ϕ∈M

R̂n(ϕ)

then since the testing dataset is independent of the training dataset and
hence ϕ̂ is independent of the testing data, we want to use Theorem 3.6
but now we would like to consider the loss function to be unbounded. This
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happens in the case of mean square error for instance. Consider the most
usual quantity (mean squared error)

R(ϕ) = E [(Y − g(X))2]

Previously we had 0 − 1 loss and we thus knew that the random variable
L(Y, ϕ(X)) was bounded and we could immediately apply Theorem 3.6.
Since we do not know that we have to make some assumptions to move
forward, but this is getting into advanced topics and is outside the scope
of this course, since how do we know that the assumptions make sense?
Anyways, we will for simplicity make the assumption that (Y − ϕ(X))2 is
sub-Gaussian with parameter λ(ϕ), i.e. where the parameter depends on
the function ϕ. If you are up to it, you should spend some time thinking
about why this is so. Hint: think of ϕ(x) = ax + b being a linear function
and let Y = 0 and X ∼ Bernoulli(1/2), that is the sub-Gaussian parameter
of (ϕ(X))2?

Anyways, we can get the following bound for the Risk using Theo-
rem 3.13 that if R̂m(ϕ) denotes the empirical risk over the testing dataset
we have

P(|R̂m(ϕ̂)−R(ϕ̂)| > ϵ | Tn) < 2e
− ϵ2n

2λ(ϕ̂)2 . (9.3)

We now run into some trouble, since we have a random variable on the right
hand side of the bound, namely λ(ϕ̂) so we cannot use the tower property
as we did in deriving (8.4) since we would need to be able to compute

E
[
e
− ϵ2n

2λ(ϕ̂)2

]
.

However, this is usually not a problem. Since, if we adhere to the Train-
Test philosophy we are actually only interested in (9.3), as at the point of
having trained and found ϕ̂, the value λ(ϕ̂) is computable given only some
assumptions on X.

Remark 9.3. It should be noted that it is more often the case that (Y −
ϕ(X))2 is sub-Exponential. This happens for instance if Y is Gaussian,

since its squared, see Lemma 3.15.

9.1.1 R2

A common metric used in evaluating regression models is the so called R2.
The reason for the name comes from the theory of linear regression, where
R2 is actually the correlation squared. The metric is an empirical one. First
consider what is called the fraction of variance unexplained

F̂ V U(ϕ̂;Tn+m \ Tn) =
1
m

∑m
i=n+1(Yi − ϕ̂(Xi))

2

1
m−1

∑m
i=n+1(Yi −

1
m

∑m
i=n+1 Yi)

2
=
R̂m(ϕ̂)

V̂m[Y ]
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Lets explain the terms in the above expression as it looks quite crowded. The
left hand side is the expression that we define as the Fraction of Variance
Explained (FVU) and it takes the proposed (Trained) function ϕ̂ and the
test set, i.e., Tn+m \ Tn = {(Xn+1, Yn+1), . . ., (Xn+m, Yn+m)}. The ratio on
the right hand side: the numerator is the empirical test risk R̂m(ϕ̂) and the
denominator is the empirical variance of Y over the testing set.

Remark 9.4. Due to the fact that in the definition of FV U the function ϕ̂

can be anything, we can have FV U take any non-negative value. Specifically,

it can be greater than 1.

Now, we define a version of R2 that comes from the idea of variance
explained and it is just 1 − FV U , but beware, it can be negative so the
term R2 does not make sense, as it is not a square (only in the case of linear
regression). You will encounter this confusion as you go out into industry,
so make sure you get it right!

Can we make a concentration statement about FVU? Well, easiest is to
realize that the true FV U given ϕ̂ is just

FV U(ϕ̂) =
R(ϕ̂)

V [Y ]

we can given the above discussion actually get intervals for both the numer-
ator and denominator separately, i.e. if we assume that Y 2 is sub-Gaussian
with parameter σ we get

P(|R̂m(ϕ̂)−R(ϕ̂)| > ϵ | Tn) < 2e
− ϵ2n

2λ(ϕ̂)2

P
(∣∣∣V̂m[Y ]− V [Y ]

∣∣∣ > ϵ | Tn
)
< 2e−

ϵ2n
2σ2

Using the union bound Lemma 1.12 we get that

P
(
|R̂m(ϕ̂)−R(ϕ̂)| ≤ ϵ and

∣∣∣V̂m[Y ]− V [Y ]
∣∣∣ ≤ ϵ | Tn

)
≥ 1− 2e

− ϵ2n

2λ(ϕ̂)2 − 2e−
ϵ2n
2σ2

Thus we can write a bound for the ratio by rearranging a bit and as-
suming that all the quantities are non-negative, i.e. R̂m(ϕ̂) − ϵ ≥ 0 and
V̂m[Y ]− ϵ ≥ 0.

P

(
R̂m(ϕ̂)− ϵ

V̂m[Y ] + ϵ
≤ R(ϕ̂)

V [Y ]
≤ R̂m(ϕ̂) + ϵ

V̂m[Y ]− ϵ
| Tn

)
≥ 1− 2e

− ϵ2n

2λ(ϕ̂)2 − 2e−
ϵ2n
2σ2

However, the problem is that often we do not know much about what is
sub-Gaussian etc. but we might be in a situation where things are bounded
and one could hope to apply Theorem 3.6. The problem is that in this case,
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often the sum of square of the residual is quite small (good model) and
perhaps also the variance of Y is small, in this case the Hoeffding inequality
is too rough and we will employ a stronger inequality called Bennett’s
inequality. It looks quite complicated, but all the things are computable
and we do it in the notebooks:

Theorem 9.5 (Bennett’s inequality). Let X1, . . . , Xn be i.i.d. random vari-

ables with finite variance such that P(Xi ≤ b) = 1 with mean zero. Let and

σ2 = V [Xi]. Then for any ϵ > 0,

P(Xn ≥ ϵ) ≤ exp

(
−nσ

2

b2
h

(
bϵ

σ2

))
where h(u) = (1 + u) log(1 + u)− u for u > 0.

In what case can we apply this theorem. Lets make the assumption that
|Y | ≤ 1 (can be done via scaling of the data). Consider again that we found
our model ϕ̂ by training on Tn and let b = maxX ϕ̂−minX ϕ̂. The constant
b can be a bit tricky to get, but we can guess its value by taking the max
and the min over the data.

P(|R̂m(ϕ̂)−R(ϕ̂)| > ϵ1 | Tn) ≤ exp

(
−nσ

2

b2
h

(
bϵ1
σ2

))
where σ2 = V [L(Y, ϕ̂(X))] (can also be estimated from data). For the Y
part we can do

P
(∣∣∣V̂m[Y ]− V [Y ]

∣∣∣ > ϵ2 | Tn
)
< exp

(
−nσ2h

( ϵ2
σ2

))
where σ2 = V [(Y − E [Y ])2]. One option is to find ϵ1, ϵ2 such that

α

2
= exp

(
−nσ

2

b2
h

(
bϵ1
σ2

))
α

2
= exp

(
−nσ2h

( ϵ2
σ2

))
which then gives a final bound of

P

(
R̂m(ϕ̂)− ϵ1

V̂m[Y ] + ϵ2
≤ R(ϕ̂)

V [Y ]
≤ R̂m(ϕ̂) + ϵ1

V̂m[Y ]− ϵ2
| Tn

)
≥ 1− α

Remark 9.6. There is an example in the Regression notebook where this

inequality is used in practice.
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9.2 Bibliography
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Chapter 10

High dimension

10.1 Introduction: Volume of the unit ball in d

dimensions

In this chapter we will deal with the geometry of high dimensions, specifically
we will touch upon the volume of unit balls and how to sample from them
and from unit spheres. Generating points from a unit ball or sphere is very
useful thing in applications and simulation.

Definition 10.1. Given a radius r > 0 we define the d-dimensional ball

as the set

Br(x) := {y ∈ Rd : |x− y| < r}.

We also denote the d-dimensional sphere as the set

Sr(x) := {y ∈ Rd : |x− y| = r}.

Whenever r = 1 we call B1(x), S1(x) unit ball and unit sphere respec-

tively. If x = 0 we omit it from the notation, and use Br = Br(0) and

Sr = Sr(0).

Remark 10.2. In this chapter we will be using the volume of sets in Rd,

but how do we define the volume? It is simply as follows

|E| =
∫
E
dx =

∫
11Edx =

∫ ∞

−∞
· · ·
∫ ∞

−∞
11E(x1, . . . , xd)dx1 . . . dxd.

But how does the volume of a unit ball change with dimension? Intu-
itively you would perhaps say that it does not change, so lets use the law of
large numbers to convince you otherwise.

To start, let us define the spherical Gaussian

141
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Model 10.3. A continuous Rd valued random variable Z with density func-

tion

f(x) =
1

(2π)d/2
exp

(
−1

2
|x|2
)
, x ∈ Rd

is called a spherical Gaussian. In short, each coordinate is a standard

Gaussian and are independent of eachother.

Let us also define the normalized Gaussian

Model 10.4. Let Z be a spherical Gaussian in Rd and consider Y =

(2π)−1/2Z then Y is called a normalized Gaussian, the density is

f(x) = exp
(
−π|x|2

)
, x ∈ Rd.

Lemma 10.5. Let d > 4π then for B1 ⊂ Rd there exists a constant C > 1

that does not depend on dimension such that

|B1| ≤
C

d
.

Proof. Let Z ∈ Rd be a normalized Gaussian, then we have that the density

of Z, f , satisfies

f(0) = 1

f(z) ≥ e−π, z ∈ B1.

Now for the normalized Gaussian each component of Z = (Z1, . . . , Zd) are

i.i.d. and they all are Gaussians with variance (2π)−1/2, this means that

|Z|2 =
∑

i |Zi|2 is now a sum of independent r.v.s and if we use Proposi-

tion 3.2

P
(∣∣|Z|2 − E [|Z|2]

∣∣ ≥ ϵ
)
≤ Var(|Z|2)

ϵ2
=
dVar(|Z1|2)

ϵ2
=
cd

ϵ2
(10.1)

in the second to last step we used independence and in the last step we used

that Var(|Z1|2) = c is a number that we can compute but we will skip it here.

However, we also know that E [|Z|2] = d
2π , so if we choose ϵ = (d − 2π)/2π

we get (f is the density for Z)

|B1|
eπ

≤
∫
B1

f(z)dz = P(Z ∈ B1)

≤ P
(
|Z|2 ≥ ϵ+ E [|Z|2] or E [|Z|2]− ϵ ≥ |Z|2

)
= P

(∣∣|Z|2 − E [|Z|2]
∣∣ ≥ ϵ

)
≤ cd

((d− 2π)/(2π))2
≤ C

d

for some constant C > 1.
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Thus the volume of the unit ball will decrease with dimension.

In the picture you can see the blue curve being the estimated probability
of a Gaussian landing inside the unit ball for different dimensions, while
the red curve denotes the upper bound given by Lemma 10.5. We did a
fairly poor job at capturing the behavior, the actual volume seems to be
much smaller than our estimate. However, the estimate (10.1) also suggests

that |Z| should concentrate around
√

d
2π , below you can see the plots of the

estimated |Z| vs the expected.

This seems fairly spot on, interesting!
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Exercise 10.6. The proof above used the concentration inequality (Cheby-

shev), which is a fairly weak one. Can you improve on the estimate above

using another concentration inequality? Do this before you read on...

10.2 The geometry of high dimension

The scaling property of volume. Lets say we have a cube centered at the
origin, namely the cube can be written as Q = [ − l, l]d where d is the
dimension, the volume is the product of the side-lengths and thus |Q| =
(2l)d. Scaling each side of the cube by (1 − ϵ) where ϵ is a small number
gives us that the volume also scales with (1− ϵ)d, this gives us the formula

|(1− ϵ)Q| = (1− ϵ)d|Q|

Lets divide this equation by the volume of Q, we get

|(1− ϵ)Q|
|Q|

= (1− ϵ)d → 0

as d→ ∞. The conclusion is that most of the volume is located close to the
surface of the cube.

Lemma 10.7. Let E ⊂ Rd and let ϵ ∈ (0, 1], then

(1− ϵ)d|E| = |(1− ϵ)E|

where (1− ϵ)E := {(1− ϵ)x : x ∈ E}.

Proof. By the change of variables formula (y1 = (1 − ϵ)x1 we get dy1 =

(1− ϵ)dx1) and our area becomes

|E| =
∫ ∞

−∞
· · ·
∫ ∞

−∞
11E(x1, . . . , xd)dx1 . . . dxd

=
1

(1− ϵ)d

∫ ∞

−∞
· · ·
∫ ∞

−∞
11E(y1/(1− ϵ), . . . , yd/(1− ϵ))dy1 . . . dyd

=
1

(1− ϵ)d

∫ ∞

−∞
· · ·
∫ ∞

−∞
11(1−ϵ)E(y1, . . . , yd)dy1 . . . dyd

=
1

(1− ϵ)d
|(1− ϵ)E|

which is what we wanted to prove.

[269]: P=plot((1-0.1)^x,1,10)

P+=plot(exp(-0.1*x),1,10,color=’green’)

P.show()

[269]:
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Based on the above, we can choose ϵ = 1/d which gives us that most of
the volume is contained in the annulus below.

10.3 Properties of the unit ball

Let us now do one of the main computations of this chapter, namely the
volume of the unit ball is computed exactly. The computation is a bit
complicated but follows the following simple structure:

1. Write the volume of the unit ball as an integral of the constant function
1 over the unit ball

2. Use a radial coordinate system to rewrite that integral so that we get
the integral over the surface of a unit ball instead.

3. Compute the integral of the Gaussian kernel in two ways, one using
the fact that exp(|x|2) = exp(|x1|2) exp(|x2|2) . . . exp(|xd|2, the second
one using radial coordinates

4. The radial part of the Gaussian integral gives rise to the Gamma
function, which is a generalization of the factorial, the spherical part
is just the area of the unit sphere (which is the one we are after).

Theorem 10.8. The volume of the unit ball in d dimensions is

|B1| =
2π

d
2

dΓ(d2)
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where Γ is the aptly named Gamma-function. If k is an integer then Γ(k) =

(k − 1)!, which gives us for even dimensions that

|B1| =
2π

d
2

d(d2 − 1)!
.

Proof. We begin by first writing down what we want to compute

|B1| =
∫
B1

dx

Step 2: Surface integral∫
B1

dx =

∫
Sd

∫ 1

0

∣∣∣∣dxdr
∣∣∣∣ drdΩ

where
∣∣dx
dr

∣∣ is the Jacobian of the change of variables and dΩ is the surface

element on the unit sphere S1 (think of the area of a tiny square on the

surface of a ball, in 3d we can think of the longitude and latitue coordinates).∣∣∣∣dxdr
∣∣∣∣ = rd−1

The conclusion is that∫
B1

dx =

∫
S1

∫ 1

0

∣∣∣∣dxdr
∣∣∣∣ drdΩ =

|S1|
d
.

In the above we used |S1| :=
∫
S1
dΩ.

Step 3a: Gaussian kernel trick (repeated integrals)

This is where we use the Gaussian kernel trick, first note that∫ ∞

−∞
e−x2

dx =
√
π

The standard normal random variable has a normalizing factor which is

1/
√
π.

[273]: x = var(’x’)

integrate(exp(-x^2),x,-infinity,infinity)

[273]: sqrt(pi)

∫
Rd

e−|x|2dx =

∫
Rd

d∏
i=1

e−x2
i dx =

d∏
i=1

∫
Rd

e−x2
i dxi = πd/2
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Step 3b: Gaussian kernel trick (spherical coordinates)

Let us compute the same integral again, but this time using spherical coor-

dinates ∫
Rd

e−|x|2dx =

∫
S1

∫ ∞

0
e−r2rd−1drdΩ = |S1|

∫ ∞

0
e−r2rd−1dr

now doing the change of variables t = r2 we get dt = 2rdr and thus∫ ∞

0
e−r2rd−1dr =

∫ ∞

0
e−tt

d−1
2

1

2
√
t
dt =

1

2

∫ ∞

0
e−tt

d
2
−1dt =

1

2
Γ

(
d

2

)
In conclusion assembling the previous step with this

πd/2 =

∫
e−|x|2dx = |S1|

1

2
Γ

(
d

2

)
.

Step 4: Assembly time

Assemling step 1 and 2 together with the line above we get

|B1| = |S1|/d =
πd/2

1
2Γ
(
d
2

)
d

which completes the proof.
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10.4 Uniform at random from a ball and sphere

Oftentimes we want to work with what is denoted as uniform at random
from the unit sphere or the unit ball. Let us define these

Model 10.9. We say that an Rd valued random variable Z is uniform at

random from the unit sphere if Z ∈ S1 and for any A we have

P(Z ∈ A) =
1

|S1|

∫
S1

11A(θ)dΩ(θ)

where the integral above is the surface integral on the sphere, here dΩ is the

surface element on S1. We denote this as Z ∼ Uniform(S1).

Remark 10.10. We havent really defined what a surface element is, but

the heuristic understanding is enough for now.

This definition is easier to grasp

Model 10.11. We say that an Rd valued random variable Z is uniform

at random from the unit ball if Z ∈ B1 and for any A we have

P(Z ∈ A) =
1

|B1|

∫
B1

11A(z)dz =
|A ∩B1|
|B1|

.

In short, the probability of landing inside A ∩B1 is given by the proportion

of the volume it makes up out of B1. We say Z ∼ Uniform(B1).

How about generation? Let us start with 2 dimensions.

10.4.1 Generating points uniformly at random from a circle

Lets say that we want to generate a uniformly at random variable on the
unit circle. One suggestion would be to generate two coordinates X and Y
i.i.d. from Uniform(−1, 1) and then projecting (X,Y ) onto the unit circle.
However, this results in the picture below, when we plot the distribution of
angles.

Lets take a look, denote the projection π, i.e.

π(x, y) = (X/
√
X2 + Y 2, Y/

√
X2 + Y 2),

then the density of the angle

f∠π(X,Y )(θ) = c0

∫ ∞

0
p(X,Y )(t cos(θ), t sin(θ))dt (10.2)

for some constant c0. Since p(X,Y )(x, y) is constant (uniform distribution)
the above basically measures the length of the line starting from the origin
(0, 0) and stretches out in direction (cos(θ), sin(θ)) and reaches the edge of
the unit square [ − 1, 1]2. This is why we see four peaks in the plot below,
one for each corner.
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Remark 10.12. From (10.2) we see that if p(X,Y ) is rotationally symmetric,

i.e. p(X,Y )(t cos(θ), t sin(θ)) = p(t) for some p then the distribution over

angles become uniform.

This warrants the following definition

Definition 10.13. We say that a function f : Rd → R is rotationally

symmetric if there exists a function g : R → R such that

f(x) = g(|x|)

for all x ∈ Rd.

From Remark 10.12 we see that if we could sample from the unit disk,
then the projection trick will produce samples uniform on the unit circle.
How do we sample from the unit disk? We can use the concept of rejection
sampling Algorithm 1, i.e. our sampling density is Uniform([ − 1, 1]d) and
our target density is 1

|B1|11B1(x).

Exercise 10.14. The rejection sampling suggested above, is that equivalent

to sampling from Uniform([ − 1, 1]d) and accepting only those samples that

lie inside the unit disk?

[281]: XY = np.random.uniform(-1,1,size=(10000,2))

XY_inCircle = XY[np.linalg.norm(XY,axis=1) < 1]
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XY_inCircle = XY_inCircle / np.linalg.

↪→norm(XY_inCircle,axis=1).reshape(-1,1)

import pylab

_=pylab.hist(np.arctan2(XY_inCircle[:,1],XY_inCircle[:

↪→,0]),bins=20)

We know from Remark 10.12 that this is uniform on the unit circle,
however is it a reasonable approach in higher dimension? We already showed
that the volume of the unit ball decreases rapidly with dimension while the
volume of the cube is 2d, so the probability of being inside the unit ball is
decreasing very rapidly,

Exercise 10.15. What happens with the rejection sampling algorithm above

when d is large?

10.4.2 Uniform at random on the unit sphere in high dimen-

sion

What was the problem that we had, well basically if we sample from the unit
square that distribution is not rotationally symmetric, thus if we sample from
a rotationally symmetric distribution then it does not matter, we can just
scale any sample to be on the unit circle. A prime example of a rotationally
symmetric random variable is the multidimensional Gaussian.
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Lemma 10.16. Let Z be a d dimensional spherical Gaussian (see Model 10.3)

then the density for f is rotationally symmetric (see Definition 10.13), as

such the density for π(Z) is uniform on the unit sphere S1, where π is

π(z) =
z

|z|
.

Exercise 10.17. Prove the above lemma using radial coordinates.

10.4.3 Uniform at random from the unit ball B1?

In the above we learned how to generate uniform at random from the unit
sphere. How can we use this to fill out the entire ball? Perhaps we think
that if we take r ∼ Uniform([0, 1]) and θ ∼ Uniform(S1), do we then get
rθ ∼ Uniform(B1)? We know that rθ | r is uniform on Sr but rθ is not
uniform, it turns out that we need to scale r as seen in the following theorem.

Theorem 10.18. Let the dimension d > 1 be fixed, let r ∼ Uniform([0, 1])

and let θ ∼ Uniform(S1). Then

r
1
d θ ∼ Uniform(B1).

Proof. Assume that X ∼ Uniform(B1), represent X in polar coordinates,

i.e. rXθX , where rX ∈ [0, 1] and θX ∈ S1. We know that given rX the

distribution for θX is uniform on the unit sphere. Secondly we know that

rX and θX are independent. The goal is to compute the density of rX :

FrX (r) = P(rX ≤ r) = P(rXθX ∈ Br) =
|Br|
|B1|

=
rd|B1|
|B1|

= rd,

where we just used the definition of the uniform distribution Model 10.11 and

Lemma 10.7. If we now wish to sample from FrX we can use the inversion

sampling technique (Theorem 5.38) and note that if r ∼ Uniform([0, 1]),

then F−1
rX

(r) ∼ FrX . This proves our theorem.

Remark 10.19. The scaling of r1/d where r ∼ Uniform([0, 1]) tells us that

we are more likely to get points with radius close to 1, than we are getting

points with radius close to 0. This points to the fact that the most interesting

things happen close to the unit sphere.

10.5 High dimensional annulus theorem

The interesting thing is that in high dimension, random variables tend to
concentrate on a spherical shell. Remember that for a d-dimensional spher-
ical Gaussian X with standard deviation 1 in each dimension satisfies

E [|X|2] = d.
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Thus one could expect that |X| concentrates around
√
d, as hinted to in

Lemma 10.5. The next theorem makes this sharper.

Theorem 10.20. For a d-dimensional RV X with mean 0, with each compo-

nent, sub-Gaussian with parameter 1 and variance a2, then for any β ≤
√
d

we have

P
(√

d|a| − β ≤ |X| ≤
√
d|a|+ β

)
< 2e−

β2

128 .

Proof. First note that |X|2 =
∑d

i=1 |Xi|2 is the sum of independent ran-

dom variables, and since Xi is sub-Gaussian with parameter 1, |Xi|2 is sub-

exponential with parameter 8, Lemma 3.15. Hence a simple application of

Theorem 3.14 tells us that

P
(
1

d
|X|2 − 1

d
E [|X|2] > ϵ

)
< e−

ϵ2d
128 ∧ e−

(ϵ+1)d
16

however

P(|X|2 > a2d+ dϵ) > P(|X| > |a|
√
d+

√
dϵ)

so, denoting β =
√
dϵ and since

(ϵ+ 1)d

16
=

(β2/d+ 1)d

16
=
β2 + d

16
>
β2

16

and

ϵ2

128
=
β4/d

128
<
β4/β2

128
=

β2

128
<
β2

16

hence we get

P (|X| > |a|
√
d+ β) < e−

β2

128 .

The other side of the inequality is obtained in a similar way, and, together

with the union bound gives the result.

10.6 Bibliography

This section is losely built on [BlHo].
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Dimensionality reduction

11.1 Random Projection and Johnson – Linden-

strauss Lemma

We saw in the previous chapter that there is a concentration effect hap-
pening in high dimension, namely that length of vectors with sub-Gaussian
components tend to concentrate on an annuli. This can be leveraged as an
algorithm, i.e. the random projection algorithm. This works because i.i.d.
vectors with i.i.d. components are essentially orthogonal, so choosing k ran-
dom vectors i.i.d. we should expect to get k decently close basis vectors of
the space. Here we are relying on the independence to get orthogonality but
we dont normalize length, if we did that we would loose the almost orthog-
onality, instead we rely on the high dimension to give us vectors that have
a certain length with high probability.

Theorem 11.1 (Random Projection). Let v be a fixed vector in Rd of

length 1, fix ϵ ∈ (0, 1) and let U1, . . . , Uk ∈ Rd be i.i.d., mean 0, being

sub-Gaussian with parameter 1 in each component and having variance a2.

Consider the projection onto (U1, . . . , Uk)

f(v) = (U1 · v, . . . , Uk · v) : Rd → Rk,

then

P
(∣∣∣|f(v)| − √

k|a||v|
∣∣∣ ≥ ϵ

√
k|a||v|

)
≤ 2e−

kϵ2

128 .

Proof. Let us first assume that |v| = 1. Now, since each component of Ui

is sub-Gaussian with parameter 1, and the components are independent, we

get

E [esUi·v] =
d∏

j=1

E [es(Ui)jvj ] ≤
d∏

j=1

es
2(vj)

2/2 = es
2
∑d

j=1 v
2
j /2 = es

2/2.

153
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That is, f(v) satisfies the prerequisites for Theorem 10.20 and we get for

β ≤
√
k

P
(√

k|a| − β ≤ |f(v)| ≤
√
k|a|+ β

)
< 2e−

β2

128 .

Setting ϵ = β/
√
k ∈ (0, 1) and scaling back the length of v we get the

statement of the theorem.

Perhaps not overly exciting as we only have a single data-point, however
we can use the union bound to extend this theorem to multiple points

Theorem 11.2 (Johnson Lindenstrauss). For any 0 < ϵ < 1 and any

integer n, let k > 384ln(n)
ϵ2

. For any set of n points {v1, . . . , vn} ∈ Rd then

the random projection defined in Theorem 11.1 satisfies

P
(
(1− ϵ)

√
k|vi − vj | ≤ f(vi − vj) ≤ (1 + ϵ)

√
k|vi − vj |

)
≥ 1− 3

2n

Proof. Since the random projection f is linear we could for each pair vi− vj
apply Theorem 11.1 and get for a = 1

P
(∣∣∣|f(vi − vj)| −

√
k|vi − vj |

∣∣∣ ≥ ϵ
√
k|vi − vj |

)
≤ 2e−

kϵ2

128 .

There are
(
n
2

)
< n2/2 pairs, so by the union bound we get

P
(
∃i, j :

∣∣∣|f(vi − vj)| −
√
k|vi − vj |

∣∣∣ ≥ ϵ
√
k|vi − vj |

)
≤ n2e−

kϵ2

128 .

Now, if we choose k such that

n2e−
kϵ2

128 = 1/n

this becomes

k =
384ln(n)

ϵ2
.

Remark 11.3. Note that this usually requires k to be quite large, however

we are proving the probability that all distances are preserved. It is usually

better if we can allow more error, see Fig. 11.1. The reason for this is that

the data itself is IID and as such we can think of Theorem 11.1 as providing

a p for a Bernoulli trial, but this is of course not rigorous.
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Figure 11.1: The distribution of relative error on the Olivetti faces dataset

using only k = 20 and k = 400 respectively.

11.2 SVD (Singular Value Decomposition)

Something that works ”better” in medium high dimension (whatever that
means) is SVD or Singular Value Decomposition.

Figure 11.2: Sample data for SVD

Lets say that we wish to represent the data using a low-dimensional
subspace, think of a low-dimensional plane. In the case of 2d there is only
1d planes (lines), but if you have, say 100 dimensions we could consider the
best fitting 10 dimensional plane. What we mean with best fitting is that
the distance from the point to its projection onto our subspace is as small
as possible. Think of our 2d example above, then we would like to find the
line such that orthogonal projection gives the smallest error. Just looking
at the plot we would take the line y = x.

https://www.openml.org/d/41083
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But how do we formulate this rigorously? Well we will solve another
problem, and later see that it is the same

Remark 11.4. Consider a line given by the unit vector v, and consider a

point x then the projection of x onto v is as above given by

(v · x)v

We will now use these ideas applied to IID samples of points {X1, . . . , Xn} ∈
Rm with zero empirical mean (we have centered them). Let v ∈ Rm be a
unit vector. Consider the projection of each Xi onto v but only consider the
proportion i.e. Xi · v, then define

Yi = (Xi · v)

The line with maximal empirical variance can be written as (Y n = 1
n

∑n
i=1 Yi =

1
n

∑n
i=1X · v = 0 since we assumed zero empirical mean)

v1 := arg max
∥v∥=1

1

n

∑
i

(Yi − Y n)
2

= arg max
∥v∥=1

n∑
j=1

|Xi · v|2.

If we construct a matrix A of size n×m with rows Xi then we can rewrite

n∑
j=1

|Xi · v|2 = |Av|2

and our problem reduces to the linear algebra problem of given an n ×m
matrix A to find the direction that is most “expanded/least contracted” by
A, in the following sense

arg max
∥w∥=1

|Av|.

Remark 11.5. Note, the singular vectors are not necessarily unique, in fact

if v is a singular vector, then so is −v. We can also have ties, in that case

we arbitrarily pick one. We assume that the singular vectors can be picked

uniquely, for instance by requiring no ties and that we fix the sign as to make

the vector unique.

Definition 11.6. The vector v1 ∈ Rm of the (n×m) matrix A, defined as

v1 := arg max
∥v∥=1

|Av|

is called the first singular vector of A. The value σ1(A) defined as

σ1(A) := |Av1|

is called the first singular value of A.
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Now that we have defined the first singular vector, we can define the
second singular vector. This is simply a vector that is orthogonal to v1
again solving our maximum problem, i.e.

v2 := arg max
∥v∥=1,v⊥v1

|Av|.

We can interpret this as follows, consider the plane given by the first
singular vector v1 as the normal, then we can consider our new problem by
finding the vector v that maximizes |(P1A)v| where

PA =


P1X1

P1X2
...

P1Xn

 , P1x = x− (x · v1)v1.

where P1 is the projection of a vector onto the plane v1 ·x = 0. See Fig. 11.3
for the result of the projection.

Figure 11.3: The data from Fig. 11.2 projected onto the normal of the plane

defined by v1.

This can be extended, all the way until we have m vectors. That is,
there are m singular vectors. To connect this to something which you have
already seen in linear algebra, note that

arg max
∥v∥=1

|Av| = arg max
∥v∥=1

|Av|2 = arg max
∥v∥=1

⟨Av,Av⟩ = arg max
∥v∥=1

⟨ATAv, v⟩
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If we let (v1, . . . , vm) be the eigenvectors (all orthogonal) and λ1, . . . , λm be
the eigenvalues of ATA (all positive and ordered decreasingly) then we can
write

v =
m∑
i=1

aivi

which allows us to write

⟨ATAv, v⟩ =

〈
ATA

(
m∑
i=1

aivi

)
,

m∑
i=1

aivi

〉

=
m∑
i=1

〈
λiaivi,

m∑
i=1

aivi

〉
=

m∑
i=1

λia
2
i

now, since 1 = ∥v∥ =
√
a21 + . . .+ a2m, the above is maximized if a1 = 1 and

all other ai = 0, since λ1 is the largest eigenvalue. We have now proved

Lemma 11.7. Let A be an (n×m) matrix, and let v1 be the first singular

vector of A and let σ1(A) be the first singular value (with σ2(A) < σ1(A)),

then v1 is an eigenvector of the m×m matrix ATA, and

max
∥v∥=1

|Av| = |Av1| =
√
λ1 = σ1(A)

where λ1 is the first eigenvalue of ATA.

Remark 11.8. The problem which can occur in the above is that for multiple

eigenvalues we have to choose one of them and identify that with the singular

vector, but this is just up to a permutation of indices. Secondly, the above

works for any singular value. I.e. every singular vector is an eigenvector

and every singular value is the square root of an eigen-value.

Remark 11.9. In the context where A is constructed from our IID vectors

X1, . . . , Xn, we see that σ1 is the standard deviation in the direction of the

first singular vector. Furthermore, the matrix ATA will then be the empirical

covariance matrix. I.e. we are looking at the eigenvectors and eigenvalues

of the empirical covariance matrix.

Theorem 11.10 (Greedy Algorithm). Let A be an n × d matrix with

singular vectors v1, ..., vr. For 1 ≤ k ≤ r, let Vk be the subspace spanned by

v1, . . . , vk. For each k, Vk is the best fit k-dimensional subspace for A.

Here, Vk is defined as

Vk = {α1v1 + . . .+ αkvk : (α1, . . . , αk) ∈ Rk} =: span({v1, . . . , vk}).
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What do we mean by best fit? Let Ṽk be another k-dimensional subspace
consider the distance of a point p to the k-dimensional subspace Ṽk, such a
space is spanned by an orthonormal basis ṽ1, . . . , ṽk, the distance from p to
Ṽk can be seen to be

∥p− projṼk
p∥ = ∥p−

k∑
i=1

(ṽi · p)ṽi∥

We mean that Vk is the k-dimensional subspace that minimizes

n∑
i=1

∥Xi − projṼk
Xi∥2

But we can use the Pythagorean theorem to get

n∑
i=1

(
∥projṼk

Xi∥2 + ∥Xi − projṼk
Xi∥2

)
=

n∑
i=1

∥Xi∥2

and thus we can get

n∑
i=1

(
∥Xi∥2 − ∥projṼk

Xi∥2
)
=

n∑
i=1

∥Xi − projṼk
Xi∥2

From the above we see that the best fitting subspace is the subspace that
maximizes the “variance” in the sense that we have seen. The point I am
making is that we can rephrase the theorem as saying that finding v1, . . . , vk
in a greedy way by maximizing the variance is the same as directly mini-
mizing the variance of the deviation from the subspace. This thus answers
our question in the beginning of the section.

If we run the greedy algorithm we get the following on the data plotted
above.

[-0.71191709 -0.70226352] 43.587923587503624

As we can see this is pretty much identical to the vector in the 45 degree
direction. To find the second singular vector, we simply project our data
onto the plane spanned by having v1 as the normal.
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We then get the following

[ 0.70226351 -0.7119171 ] 14.365618434588386

Its clear which direction this is headed. Let us also look at what happens
when we project the data onto the plane with normal v2.
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Exercise 11.11. What have we done? Two projections in a row? What is

the projection of a projection?

It should be clear from the definition and Theorem 11.10 that projVmA =
A. That is, if we use all possible singular vectors, then we can represent the
data from A as points in Vm. That is any row of A can be written as a linear
combination of all the singular vectors.

Singular Value Decomposition of a Matrix

Remember that we said that if we compute m singular vectors of the n×m
dimensional matrix A, then

projVmA = A

this implies that we can write each row in A as Xi =
∑m

j=1(Xi · vj)vj which
we can now rewrite as

A =
m∑
j=1

Avjv
T
j

denoting ui :=
Avi
σi

we see that the above expression becomes

A =
m∑
j=1

σjujv
T
j (11.1)

This is the singular value decomposition. I.e. we have decomposed A
into a sum of matrices, that is ujv

T
j is n×m matrices.

Rewriting the above equation in matrix format we get

A = UDV T

where U is the matrix with u1, . . . as the columns, D is a diagonal matrix
with σi as the diagonal and V is the matrix with vi as columns of V .

Definition 11.12. The vectors ui are called the left singular vectors.

11.2.1 The power method

Another way to prove Lemma 11.7 is to consider the matrix ATA using our
decomposition above to get

ATA = (UDV T )T (UDV T ) = (V DUTUDV T ) = V D2V T

since UTU = I which comes from the fact that the columns are orthonormal.

Exercise 11.13. Prove that the left singular vectors are orthonormal.
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This means that for any column vi in V

ATAvi = V D2V T vi = σ2i vi

so we see that vi is the i:th eigenvector of ATA with eigenvalue σ2i . We can
thus find the singular vectors by trying to find the eigenvectors of ATA.

How do we find the eigenvectors of B = ATA? Well first note that

Bk = (V D2V T )k = (V D2kV T )

by the same argument as above, i.e. V TV = I. Thus we see that if σ1 > σ2
then if we let k be large enough then

Bk ≈ (σ1)
2kv1v

T
1 .

11.3 PCA

What is PCA, well basically it is a coordinate transformation from the origi-
nal coordinates to the coordinate system given by the singular vectors. Since
V is orthonormal it is as simple as a product, i.e.

A = UDV T

Recall that each row in A is a data point i.e. an m dimensional vector and
that V is an orthonormal basis, as such we project each point in A onto each
basis vector from V by using dot products, as in (Xi · vi)vi, the coordinate
in the basis is just Xi · vi, and as such we get

PCA(A) = AV = UDV TV = UD

Remark 11.14. Warning: In the beginning of this section we assumed that

our data had empirical mean zero. Thus in order to use this we first have

to center the data.

11.4 SVD in Action

This is all cool and such, but what can you do with it?
Singular value decomposition can be used in the following ways

11.4.1 Factor Analysis

• Studying underlying factors. The famous g factor: proposed by
Spearman (Spearman correlation), to describe “general intelligence”
as a singular vector based on data about IQ, Math ability and other
cognitive tests. This is also called Factor analysis.

• Compressing a representation of data, as a dimensional reduction tech-
nique. This is similar to the rank k approximation idea.
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11.4.2 Example on compressing data

Lets consider the Mnist dataset, which is handwritten digits from 0 to 9.
These are represented as 8 × 8 pixel images and will be put together as a
single array of length 64. As such we have points in Rd with d = 64. The
number of points is 1797. If we assemble all these images into a matrix as
before, where each row is a datapoint (image) we get a matrix A of shape
1797 × 64. Recall from (11.1) we have that A is the sum of m matrices of
shape n×m, we will now sum this from 1 to 10 instead and consider

Ak :=
k∑

i=1

σjujv
T
j

for k = 10. That is, we are using 10 singular vectors to represent the digits,
in Fig. 11.4 you can see 10 uncompressed sample images and in Fig. 11.5
you can see the same 10 samples but compressed. What do we mean, we
mean that if Xi is an image, it will be row i of A, the compressed image will
be row i of A10.

Figure 11.4: 10 sample images from Mnist

Number of data points: 1797, number of features: 64,

↪→Number of components: 10
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Figure 11.5: The data from Fig. 11.4 projected onto the plane defined by

the first 10 singular vectors.

What we can see is that even with only 10 components we were able to
fairly well represent the digits, although it is clear that some are not so easy.

Reconstruction error

The reconstruction error is defined as the error we make in the compression,
i.e. the square distance between the real image and the target image,

Reconst :=

√√√√ n∑
i=1

∥(A)i − (Ak)i∥2

For those who know linear algebra this is nothing else than the Frobenious
norm of A−Ak. Using the decomposition (11.1) we get that

A−Ak =

m∑
j=k+1

σjujv
T
j

and the norm of this is simply
√∑m

j=k+1 σ
2
j . As such the sum of squares of

the remaining singular values are giving us the reconstruction error.

Explained variance

Explained variance is how much percentage of the total variance is captured
by our singular vectors. Remember the interpretation of the singular values
as the standard deviation, as such the variance explained of the first k
components is just the sum of the singular values squared and divided by
the total variance.
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11.4.3 Anomaly detection and reconstruction error

The approach taken in Section 11.4.2 can be used for a rudimentary form
of anomaly detection, which incidentally works really well.

The point is here is that we compress data into the matrix Ak, we es-
timate the distribution function for ∥(A)i − (Ak)i∥ using the samples and
then use this to select quantiles that we will use for detection of an anomaly.

11.5 Theoretical analysis

The PCA components are eigenvector of the empirical covariance matrix.
Namely, let Z = (X1, . . . , Xd) ∼ FZ and consider an i.i.d. sequence of
Z1, . . . , Zn. Covariance matrix is

E [(Z − E [Z])(Z − E [Z])T ]

assuming that Z has mean zero, lets consider

E [ZZT ] = (E [XiXj ])i,j

there are d2/2 such values. Now the empirical covariance matrix is that we
use the empirical mean to estimates each component of the matrix, i.e.

Σ̂i,j =
1

n

n∑
k=1

(Zk)i(Zk)j

if now each component of Zk is sub-Gaussian then we can use concentration
to get something like

P(|Σ̂i,j − (E [XiXj ])i,j | > ϵ) < e−cϵn

using the union bound we can thus get

P(max
i,j

|Σ̂i,j − (E [XiXj ])i,j | > ϵ) <
d2

2
e−cϵn

The d2 in the estimate is however quite suboptimal and there is an improve-
ment over the above, which follows from the so-called Matrix Bernstein
inequality.

Theorem 11.15. Let X1, . . . , Xn be centred i.i.d, random vectors in Rd.

Suppose that for all i, Var(Xi) = Σ and P(∥Xi∥2 ≤
√
C) = 1 for some C.

Then for all ϵ > 0

P
[∥∥∥Σ̂n − Σ

∥∥∥ > ϵ
]
≤ 2de

− nϵ2

2C(C+2ϵ/3)
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Remark 11.16. The notation ∥Σ∥ for matrices, denotes the operator norm.

This theorem tells us that with high probability the estimated covariance
matrix will be close to the true covariance Σ if we have many observations.
However, the PCA method relied on computing the eigen-values and eigen-
vectors of Σ̂n. Closeness in the matrix norm allows us to say something
about the closeness of the eigen-values

Theorem 11.17 (Weyls theorem). Let Σ̂ = Σ + E, where Σ and E are

symmetric matrices. Let λi and λ̂i be the i:th eigen-values of Σ and Σ̂

respectively. Then

max
i=1,...,d

|λ̂i − λi| ≤ ∥E∥.

This is all well and good, but estimating the eigen-vectors is a difficult
problem.

Example 11.18. Consider Σ =

[
1, 0

0, 1

]
and E =

[
0, ϵ

ϵ, 0

]
. The eigenvalues

of Σ are 1 and 1. The eigen-vectors of Σ are

[
1

0

]
and

[
0

1

]
. The eigen-values

of Σ̂ := Σ+E is 1 + ϵ and 1− ϵ. However, for any ϵ, the eigenvectors of Σ̂

are 1√
2

[
1

1

]
and 1√

2

[
1

−1

]
.

The problem in the above example is the closeness of the eigen-values
for Σ̂, since Σ has a double eigen-value. This poses problems as it is an
unstable problem and we have no hope. What we can say though, is that if
the eigen-values are only simple, then we can expect stability. We will not
cover that in this course, but if you want to dig deeper, check-out [WW].

11.6 Reconstruction error

Introduce the class

Pk = {Π : Rd → Rd | Π is an orthogonal projection of rank k}.

Consider a Rd valued random variable X ∈ L2(P). Define the loss function
L(X,Π(X)) = ∥X − Π(X)∥22, for X ∈ Rd, then define the reconstruction
error of the projection operator Π as

R(Π) = E [L(Z,Π(Z))].



CHAPTER 11. DIMENSIONALITY REDUCTION 167

The minimizer of the risk Π∗
k is defined as

Π∗
k = arg min

Π∈Pk

R(Π).

As we have seen above with singular value decomposition etc. we have that
Π∗

k is the projection onto the first k eigen-vectors of the covariance matrix
Σ.

The empirical minimization problem is

Π̂∗
k = arg min

Π∈Pk

1

n

n∑
i=1

L(Xi,Π(Xi)) = arg min
Π∈Pk

1

n

n∑
i=1

∥Xi −Π(Xi)∥22.

The excess risk is defined as

Ek := R(Π̂∗
k)−R(Π∗

k)

as in Chapter 8 the goal is to bound the excess risk with high probability.
We have the following estimate

Lemma 11.19. In the setting above, if we define Σ̂ the empirical covariance

matrix, then

Ek ≤
√
2k∥Σ− Σ̂∥2

Proof. See [ReWa, Proposition 2.2].

Thus, we have from Theorem 11.15

Theorem 11.20. Let X1, . . . , Xn be centred i.i.d, random vectors in Rd.

Suppose that for all i, Var(Xi) = Σ and P(∥Xi∥2 ≤
√
C) = 1 for some C.

Then for all ϵ > 0

P [Ek > ϵ] ≤ P
[∥∥∥Σ̂n − Σ

∥∥∥ > ϵ/
√
2k
]
≤ 2de

− nϵ2

4C(C+2ϵ/3)k

11.7 Bibliography

The first part concerning SVD is losely built on [BlHo]. For the Bernstein
inequality Theorem 11.15 see [WW, Corollary 6.20]. If you want to dig
deeper into reconstruction errors, see [ReWa].
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Group Assignments

12.1 Group Assignment 1

• Prove Lemma 1.14

• Prove Lemma 2.8

• Prove property 4 of Theorem 2.18

• Solve Exercise 2.59

• Prove the ”tower property” (Theorem 2.60) for a discrete random vari-
able taking a finite number of values.

12.2 Group Assignment 2

• Prove Corollary 3.7.

• Prove Lemma 3.15, properties 1-4.

• Solve Exercise 3.16

• Solve Exercise 4.7

• Prove Theorem 4.9 with all details, basically referring to all the prop-
erties of the indicator function used, the monotonicity of measures
etc.

12.3 Group Assignment 3

• Solve Exercise 5.20

• Solve Exercise 6.11

168
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• Solve Exercise 6.19

• Solve Exercise 7.12

• Solve Exercise 7.17
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σ-algebra, 4
d-dimensional ball, 141
d-dimensional sphere, 141
t-step transition matrix, 103
n-product experiment, 2
“complexity”, 122

homogeneous, 104

Accept-Reject Sampler, 96
Addition Rule, 4
adjacency matrix, 109
aperiodic state, 107
asymptotically consistent, 81
asymptotically consistent

estimator, 82
asymptotically unbiased, 79

Bayes classification rule, 72
Bennett’s inequality, 139
Bonferroni correction, 53
Boole’s inequality, 6
Borel sigma-algebra, 8

Chebychev’s inequality, 49
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conditional probability, 9
conditional probability mass /

density function, 42
congruential generator, 92
continuous, 20
Convergence Almost Surely, 61
Convergence in Lp, 62
Convergence in Distribution, 58

Convergence in Probability, 61
cumulative distribution function,

15
cylinder set, 9

data space, 78
decision function, 71
decision rule, 71
decreasing, 25
degree, 109
directed edge, 109
directed graph, 109
discrete, 18
discrete (or discrete-time)

stochatic process, 99
distribution function, 15, 27

edge, 109
edge set, 109
empirical measure, 125
empirical risk minimizer, 120, 136
events, 1
Events in Probability Model, 8
expectation, 30
expected value, 30
experiment, 1, 7

first moment, 30
first singular value, 156
first singular vector, 156

Google’s random surfer model,
110

Graph, 109
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graph theory defintions, 109
Greedy Algorithm, 158

half-spaces, 8
Hoeffdings inequality, 51
Hoeffdings lemma, 49
homogeneous, 101, 102

in-edges, 109
inclusion-exclusion principle, 6
increasing, 25
independent, 4, 12
Indicator Function, 17
integral, 77
intercommunicates, 106
irreducible, 106

Johnson Lindenstrauss, 154
joint cumulative distribution

function, 32
joint distribution function, 32
joint probability density function,

35
joint probability mass function,

33

left singular vectors, 161
Linear Classifiers, 122

marginal distribution, 32, 34, 35
marginal probability mass

function, 34, 35
Markov chain, 101, 102
Markov’s inequality, 48
Matrix Bernstein inequality, 165
mean, 30
mean squared error, 81
multigraph, 109
mutually exclusive, 1

neighbourhood, 109
neighbours, 109
non-parametric model, 66
norm, 38
normalized Gaussian, 142

occured, 1

one-to-one and monotone, 25

out-edges, 109

outcomes, 1

pair-wise disjoint, 1

parameter, 77

parameter space, 77

parametric model, 66

period, 107

periodic, 107

Point estimation, 77

point estimator, 78

possible return times, 107

posterior probability of, 12

power set, 8

prior probability of, 12

probability density function
(PDF), 20

probability mass function, 18

probability measure, 5, 14

probability model, 7, 8

probability triple, 5, 7

property graphs, 109

pseudorandom, 91

random mapping representation,
105

Random Projection, 153

random surf, 110

Random Variable (RV), 15, 31

random walk on graphs, 108

Real-world Interpretation, 8

reducible, 106

reversible Markov chain, 108

rotationally symmetric, 149

sample mean, 80

sample space, 1

sampling distribution, 79

Semigroup, 104

sigma-algebra, 4

sigma-field, 4

simple event, 1
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Singular Value Decomposition,
155

Something Happens, 3
spherical Gaussian, 142
standard deviation, 30
standard error, 80
standard Gaussian, 22
state space, 101, 102
stationary distribution, 107
statistic, 78
statistical model, 66
stochastic process, 99
sub-exponential, 54
sub-Gaussian, 53
SVD, 155

testing dataset, 120, 136
testing set, 120, 136
training dataset, 120, 136
transition matrix, 102
trial, 2

UCEM, 126
unbiased, 79
undirected edge, 109
undirected graph, 109
uniform at random from the unit

ball, 148
uniform at random from the unit

sphere, 148
uniform pseudorandom number

generator, 91
union bound, 7
unit ball, 141, 145
unit sphere, 141

validation data, 121
variance, 30
VC-dimension, 130
vertex set, 109
vertices, 109

weighted, 109
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